The SIR epidemic model from a PDE point of view

被引:29
|
作者
Chalub, Fabio A. C. C. [2 ,3 ]
Souza, Max O. [1 ]
机构
[1] Univ Fed Fluminense, Dept Matemat Aplicada, BR-22240920 Niteroi, RJ, Brazil
[2] Univ Nova Lisboa, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
[3] Univ Nova Lisboa, Ctr Matemat & Aplicacoes, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Epidemiology; Markov chains; Conservation laws; Thermodynamical limit; MATHEMATICAL-THEORY; ENDEMICITY;
D O I
10.1016/j.mcm.2010.05.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a derivation of the classical Susceptible-Infected-Removed (SIR) and Susceptible-Infected-Removed-Susceptible (SIRS) models through a mean-field approximation from a discrete version of SIR(S). We then obtain a hyperbolic forward Kolmogorov equation, and show that its projected characteristics recover the standard SIR(S) model. Moreover, for the SIRS model, we show that the long time limit of the SIRS model will be a Dirac measure supported on the corresponding isolated equilibria. For the SIR model, we show that the long time limit is a Radon measure supported in a segment of nonisolated equilibria. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1568 / 1574
页数:7
相关论文
共 50 条
  • [21] The effect of impulsive vaccination on an SIR epidemic model
    Shi, Ruiqing
    Jiang, Xiaowu
    Chen, Lansun
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 212 (02) : 305 - 311
  • [22] Optimal Synthesize Control For An SIR Epidemic Model
    Jun, Guan Hong
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3732 - 3736
  • [23] DYNAMICAL PROPERTIES OF A NEW SIR EPIDEMIC MODEL
    Li, Lei
    Ni, Wenjie
    Wang, Mingxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 690 - 707
  • [24] TRANSITION PROBABILITIES FOR GENERALIZED SIR EPIDEMIC MODEL
    El Maroufy, Hamid
    Omari, Lahcen
    Taib, Ziad
    STOCHASTIC MODELS, 2012, 28 (01) : 15 - 28
  • [25] Dynamics Analysis of a Stochastic SIR Epidemic Model
    Rao, Feng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [26] SIR model of epidemic spread with accumulated exposure
    B. Dybiec
    The European Physical Journal B, 2009, 67 : 377 - 383
  • [27] Numerical modelling of an SIR epidemic model with diffusion
    Chinviriyasit, Settapat
    Chinviriyasit, Wirawan
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 395 - 409
  • [28] Pulse vaccination strategy in the SIR epidemic model
    Shulgin, B
    Stone, L
    Agur, Z
    BULLETIN OF MATHEMATICAL BIOLOGY, 1998, 60 (06) : 1123 - 1148
  • [29] Pulse vaccination strategy in the SIR epidemic model
    Boris Shulgin
    Lewi Stone
    Zvia Agur
    Bulletin of Mathematical Biology, 1998, 60 (6) : 1123 - 1148
  • [30] On an SIR epidemic model with vaccination in a patchy environment
    De la Sen, M.
    Nistal, R.
    Alonso-Quesada, S.
    Ibeas, A.
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 227 - 232