Arithmetic and metric properties of p-adic Engel series expansions

被引:0
|
作者
Grabner, PJ
Knopfmacher, A
机构
[1] Graz Tech Univ, Inst Math A, A-8010 Graz, Austria
[2] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Wits, South Africa
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2003年 / 63卷 / 03期
关键词
Engel series; p-adic numbers; metric properties;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a characterization of rational numbers in terms of their unique p-adic Engel series expansions. Thereafter we investigate metric properties for the rational digits occurring in these p-adic Engel expansions. In particular, we obtain limiting distributions for the p-adic order of the digits and the p-adic order of approximation by the partial sums of the series expansions.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 50 条
  • [31] Arithmetic in the fundamental group of a p-adic curve. On the p-adic section conjecture for curves
    Pop, Florian
    Stix, Jakob
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 : 1 - 40
  • [32] Sylvester Expansions over the Field of P-adic
    Zou, Ruibiao
    Shen, Luming
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 471 - 475
  • [33] A p-adic arithmetic inner product formula
    Disegni, Daniel
    Liu, Yifeng
    INVENTIONES MATHEMATICAE, 2024, 236 (01) : 219 - 371
  • [34] Arithmetic Subderivatives: p-adic Discontinuity and Continuity
    Haukkanen, Pentti
    Merikoski, Jorma K.
    Tossavainen, Timo
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (07)
  • [35] p-adic path set fractals and arithmetic
    Abram, William C.
    Lagarias, Jeffrey C.
    JOURNAL OF FRACTAL GEOMETRY, 2014, 1 (01) : 45 - 81
  • [36] ARITHMETIC OF P-ADIC MODULAR-FORMS
    GOUVEA, FQ
    LECTURE NOTES IN MATHEMATICS, 1988, 1304 : 1 - 121
  • [37] INTERTWINING MAPS BETWEEN p-ADIC PRINCIPAL SERIES OF p-ADIC GROUPS
    Ban, Dubravka
    Hundley, Joseph
    REPRESENTATION THEORY, 2021, 25 : 975 - 993
  • [38] On p-adic Hermitian Eisenstein series and p-adic Siegel cusp forms
    Kikuta, Toshiyuki
    Mizuno, Yoshinori
    JOURNAL OF NUMBER THEORY, 2012, 132 (09) : 1949 - 1961
  • [39] p-ADIC ELLIPTIC POLYLOGARITHM, p-ADIC EISENSTEIN SERIES AND KATZ MEASURE
    Bannai, Kenichi
    Kings, Guido
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (06) : 1609 - 1654
  • [40] A notion of diaphony based on p-adic arithmetic
    Hellekalek, Peter
    ACTA ARITHMETICA, 2010, 145 (03) : 273 - 284