A unified framework for the numerical solution of optimal control problems using pseudospectral methods

被引:524
|
作者
Garg, Divya [1 ]
Patterson, Michael [1 ]
Hager, William W. [1 ]
Rao, Anil V. [1 ]
Benson, David A. [2 ]
Huntington, Geoffrey T. [3 ]
机构
[1] Univ Florida, Gainesville, FL 32611 USA
[2] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA
[3] Blue Origin LLC, Kent, WA 98032 USA
基金
美国国家科学基金会;
关键词
Optimal control; Pseudospectral methods; Nonlinear programming; COSTATE ESTIMATION; CONVERGENCE; COLLOCATION;
D O I
10.1016/j.automatica.2010.06.048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A unified framework is presented for the numerical solution of optimal control problems using collocation at Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. It is shown that the LG and LGR differentiation matrices are rectangular and full rank whereas the LGL differentiation matrix is square and singular. Consequently, the LG and LGR schemes can be expressed equivalently in either differential or integral form, while the LGL differential and integral forms are not equivalent. Transformations are developed that relate the Lagrange multipliers of the discrete nonlinear programming problem to the costates of the continuous optimal control problem. The LG and LGR discrete costate systems are full rank while the LGL discrete costate system is rank-deficient. The LGL costate approximation is found to have an error that oscillates about the true solution and this error is shown by example to be due to the null space in the LGL discrete costate system. An example is considered to assess the accuracy and features of each collocation scheme. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1843 / 1851
页数:9
相关论文
共 50 条
  • [1] AN OVERVIEW OF THREE PSEUDOSPECTRAL METHODS FOR THE NUMERICAL SOLUTION OF OPTIMAL CONTROL PROBLEMS
    Garg, Divya
    Patterson, Michael A.
    Hager, William W.
    Rao, Anil V.
    Benson, David A.
    Huntington, Geoffrey T.
    [J]. ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 475 - +
  • [2] Numerical solution of optimal control problems using multiple-interval integral Gegenbauer pseudospectral methods
    Tang, Xiaojun
    [J]. ACTA ASTRONAUTICA, 2016, 121 : 63 - 75
  • [3] A new framework for solving fractional optimal control problems using fractional pseudospectral methods
    Tang, Xiaojun
    Shi, Yang
    Wang, Li-Lian
    [J]. AUTOMATICA, 2017, 78 : 333 - 340
  • [4] A robust pseudospectral method for numerical solution of nonlinear optimal control problems
    Mehrpouya, Mohammad Ali
    Peng, Haijun
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1146 - 1165
  • [5] Numerical solution of nonlinear periodic optimal control problems using a Fourier integral pseudospectral method
    Elgindy, Kareem T.
    [J]. Journal of Process Control, 2024, 144
  • [6] A Unified Pseudospectral Computational Framework for Optimal Control of Road Vehicles
    Xu, Shaobing
    Li, Shengbo Eben
    Deng, Kun
    Li, Sisi
    Cheng, Bo
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2015, 20 (04) : 1499 - 1510
  • [7] Pseudospectral knotting methods for solving optimal control problems
    Ross, IM
    Fahroo, F
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2004, 27 (03) : 397 - 405
  • [8] Pseudospectral methods for infinite-horizon optimal control problems
    Fahroo, Fariba
    Ross, I. Michael
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2008, 31 (04) : 927 - 936
  • [9] Convergence of pseudospectral methods for constrained nonlinear optimal control problems
    Gong, Q
    Ross, IM
    Kang, W
    Fahroo, F
    [J]. PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2004, : 209 - 214
  • [10] SOLUTION OF NONLINEAR DELAY OPTIMAL CONTROL PROBLEMS USING A COMPOSITE PSEUDOSPECTRAL COLLOCATION METHOD
    Marzban, Hamid Reza
    Tabrizidooz, Hamid Reza
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (05) : 1379 - 1389