A unified framework for the numerical solution of optimal control problems using pseudospectral methods

被引:524
|
作者
Garg, Divya [1 ]
Patterson, Michael [1 ]
Hager, William W. [1 ]
Rao, Anil V. [1 ]
Benson, David A. [2 ]
Huntington, Geoffrey T. [3 ]
机构
[1] Univ Florida, Gainesville, FL 32611 USA
[2] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA
[3] Blue Origin LLC, Kent, WA 98032 USA
基金
美国国家科学基金会;
关键词
Optimal control; Pseudospectral methods; Nonlinear programming; COSTATE ESTIMATION; CONVERGENCE; COLLOCATION;
D O I
10.1016/j.automatica.2010.06.048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A unified framework is presented for the numerical solution of optimal control problems using collocation at Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. It is shown that the LG and LGR differentiation matrices are rectangular and full rank whereas the LGL differentiation matrix is square and singular. Consequently, the LG and LGR schemes can be expressed equivalently in either differential or integral form, while the LGL differential and integral forms are not equivalent. Transformations are developed that relate the Lagrange multipliers of the discrete nonlinear programming problem to the costates of the continuous optimal control problem. The LG and LGR discrete costate systems are full rank while the LGL discrete costate system is rank-deficient. The LGL costate approximation is found to have an error that oscillates about the true solution and this error is shown by example to be due to the null space in the LGL discrete costate system. An example is considered to assess the accuracy and features of each collocation scheme. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1843 / 1851
页数:9
相关论文
共 50 条
  • [41] On Numerical Solution of Singularly Perturbed Optimal Control Problems
    Vladimir Gaitsgory
    Matthias Gerdts
    [J]. Journal of Optimization Theory and Applications, 2017, 174 : 762 - 784
  • [42] On Numerical Solution of Singularly Perturbed Optimal Control Problems
    Gaitsgory, Vladimir
    Gerdts, Matthias
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (03) : 762 - 784
  • [43] A Unified Analytical Framework for Optimal Control Problems on Networks With Input Homogeneity
    Li, Mingwu
    Dankowicz, Harry
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (04): : 1822 - 1832
  • [45] Numerical methods for solving terminal optimal control problems
    Gornov, A. Yu.
    Tyatyushkin, A. I.
    Finkelstein, E. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (02) : 221 - 234
  • [46] Numerical methods for finding clustersolutions of optimal control problems
    Chuang, LH
    Katz, IN
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01): : 126 - 147
  • [47] Numerical methods for solving terminal optimal control problems
    A. Yu. Gornov
    A. I. Tyatyushkin
    E. A. Finkelstein
    [J]. Computational Mathematics and Mathematical Physics, 2016, 56 : 221 - 234
  • [48] Numerical methods for solving applied optimal control problems
    Gornov, A. Yu.
    Tyatyushkin, A. I.
    Finkelstein, E. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (12) : 1825 - 1838
  • [49] Notes on Numerical Methods for Solving Optimal Control Problems
    Biral, Francesco
    Bertolazzi, Enrico
    Bosetti, Paolo
    [J]. IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2016, 5 (02) : 154 - 166
  • [50] NUMERICAL METHODS FOR SOLVING OPTIMAL CONTROL FOR STEFAN PROBLEMS
    Nekrasov, S. A.
    Volkov, V. S.
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (02): : 87 - 100