Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization

被引:125
|
作者
Agarwal, Alekh [1 ]
Bartlett, Peter L. [1 ,2 ,3 ]
Ravikumar, Pradeep [4 ]
Wainwright, Martin J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[4] Univ Texas Austin, Dept Comp Sci, Austin, TX 78701 USA
基金
美国国家科学基金会;
关键词
Computational learning theory; convex optimization; Fano's inequality; information-based complexity; minimax analysis; oracle complexity; MINIMAX RATES;
D O I
10.1109/TIT.2011.2182178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We introduce a new notion of discrepancy between functions, and use it to reduce problems of stochastic convex optimization to statistical parameter estimation, which can be lower bounded using information-theoretic methods. Using this approach, we improve upon known results and obtain tight minimax complexity estimates for various function classes.
引用
收藏
页码:3235 / 3249
页数:15
相关论文
共 50 条
  • [41] Information-theoretic lower bounds on the routing overhead in mobile ad-hoc networks
    Zhou, NJ
    Abouzeid, AA
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 455 - 455
  • [42] Information-theoretic lower bounds on the routing overhead in mobile ad-hoc networks
    [J]. Zhou, N. (zhoun@rpi.edu), 1600, IEEE Information Theory Society (Institute of Electrical and Electronics Engineers Inc.):
  • [43] INFORMATION-THEORETIC COMPLEXITY OF PROGRAM SPECIFICATIONS.
    Coulter, N.S.
    Copper, R.B.
    Solomon, M.K.
    [J]. 1600, (30):
  • [44] INFORMATION-THEORETIC MODELING OF PERCEIVED MUSICAL COMPLEXITY
    Sauve, Sarah A.
    Pearce, Marcus T.
    [J]. MUSIC PERCEPTION, 2019, 37 (02): : 165 - +
  • [45] On lower complexity bounds for large-scale smooth convex optimization
    Guzman, Cristobal
    Nemirovski, Arkadi
    [J]. JOURNAL OF COMPLEXITY, 2015, 31 (01) : 1 - 14
  • [46] An Information-Theoretic Approach to Portfolio Optimization
    Djakam, W. Ngambou
    Tanik, Murat M.
    [J]. SOUTHEASTCON 2022, 2022, : 332 - 338
  • [47] Information-Theoretic Exploration with Bayesian Optimization
    Bai, Shi
    Wang, Jinkun
    Chen, Fanfei
    Englot, Brendan
    [J]. 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 1816 - 1822
  • [48] Information-theoretic optimization of chemical sensors
    Vergara, Alexander
    Muezzinoglu, Mehmet K.
    Rulkov, Nikolai
    Huerta, Ramon
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2010, 148 (01) : 298 - 306
  • [49] Information-Theoretic Bounds and Approximations in Neural Population Coding
    Huang, Wentao
    Zhang, Kechen
    [J]. NEURAL COMPUTATION, 2018, 30 (04) : 885 - 944
  • [50] An information-theoretic approach to stochastic materials modeling
    Zabaras, Nicholas
    Sankaran, Sethuraman
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (02) : 30 - 39