Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization

被引:125
|
作者
Agarwal, Alekh [1 ]
Bartlett, Peter L. [1 ,2 ,3 ]
Ravikumar, Pradeep [4 ]
Wainwright, Martin J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[4] Univ Texas Austin, Dept Comp Sci, Austin, TX 78701 USA
基金
美国国家科学基金会;
关键词
Computational learning theory; convex optimization; Fano's inequality; information-based complexity; minimax analysis; oracle complexity; MINIMAX RATES;
D O I
10.1109/TIT.2011.2182178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We introduce a new notion of discrepancy between functions, and use it to reduce problems of stochastic convex optimization to statistical parameter estimation, which can be lower bounded using information-theoretic methods. Using this approach, we improve upon known results and obtain tight minimax complexity estimates for various function classes.
引用
收藏
页码:3235 / 3249
页数:15
相关论文
共 50 条
  • [21] Information Theoretic Lower Bounds for Information Theoretic Upper Bounds
    Livni, Roi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Lower bounds for non-convex stochastic optimization
    Yossi Arjevani
    Yair Carmon
    John C. Duchi
    Dylan J. Foster
    Nathan Srebro
    Blake Woodworth
    [J]. Mathematical Programming, 2023, 199 : 165 - 214
  • [23] Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting
    Srinivas, Niranjan
    Krause, Andreas
    Kakade, Sham M.
    Seeger, Matthias W.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 3250 - 3265
  • [24] INFORMATION-THEORETIC COMPLEXITY OF PROGRAM SPECIFICATIONS
    COULTER, NS
    COOPER, RB
    SOLOMON, MK
    [J]. COMPUTER JOURNAL, 1987, 30 (03): : 223 - 227
  • [25] PIR with Client-Side Preprocessing: Information-Theoretic Constructions and Lower Bounds
    Ishai, Yuval
    Shi, Elaine
    Wichs, Daniel
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT IX, 2024, 14928 : 148 - 182
  • [26] Improved lower bounds for learning from noisy examples: An information-theoretic approach
    Gentile, C
    Helmbold, DP
    [J]. INFORMATION AND COMPUTATION, 2001, 166 (02) : 133 - 155
  • [27] OPTIMIZATION OF CONCURRENT ENGINEERING PROJECTS USING AN INFORMATION-THEORETIC COMPLEXITY METRIC
    Schlick, Christopher M.
    Duckwitz, Soenke
    Gaertner, Thomas
    Tackenberg, Sven
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL DSM CONFERENCE, 2009, : 53 - +
  • [28] Curvature and complexity: Better lower bounds for geodesically convex optimization
    Criscitiello, Christopher
    Boumal, Nicolas
    [J]. THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [29] An Information-Theoretic View of Stochastic Localization
    El Alaoui, Ahmed
    Montanari, Andrea
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (11) : 7423 - 7426
  • [30] Models and information-theoretic bounds for nanopore sequencing
    Mao, Wei
    Diggavi, Suhas
    Kannan, Sreeram
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2458 - 2462