Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization

被引:125
|
作者
Agarwal, Alekh [1 ]
Bartlett, Peter L. [1 ,2 ,3 ]
Ravikumar, Pradeep [4 ]
Wainwright, Martin J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[4] Univ Texas Austin, Dept Comp Sci, Austin, TX 78701 USA
基金
美国国家科学基金会;
关键词
Computational learning theory; convex optimization; Fano's inequality; information-based complexity; minimax analysis; oracle complexity; MINIMAX RATES;
D O I
10.1109/TIT.2011.2182178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We introduce a new notion of discrepancy between functions, and use it to reduce problems of stochastic convex optimization to statistical parameter estimation, which can be lower bounded using information-theoretic methods. Using this approach, we improve upon known results and obtain tight minimax complexity estimates for various function classes.
引用
收藏
页码:3235 / 3249
页数:15
相关论文
共 50 条
  • [1] Information-theoretic lower bounds for convex optimization with erroneous oracles
    Singer, Yaron
    Vondrak, Jan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [2] Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory
    Braun, Gabor
    Guzman, Cristobal
    Pokutta, Sebastian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4709 - 4724
  • [3] Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization
    Haghifam, Mahdi
    Rodriguez-Galvez, Borja
    Thobaben, Ragnar
    Skoglund, Mikael
    Roy, Daniel M.
    Dziugaite, Gintare Karolina
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 663 - 706
  • [4] Information-theoretic lower bounds for zero-order stochastic gradient estimation
    Alabdulkareem, Abdulrahman
    Honorio, Jean
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2316 - 2321
  • [5] Stochastic chaining and strengthened information-theoretic generalization bounds
    Zhou, Ruida
    Tian, Chao
    Liu, Tie
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (06): : 4114 - 4134
  • [6] Information-Theoretic Lower Bounds for Distributed Function Computation
    Xu, Aolin
    Raginsky, Maxim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2314 - 2337
  • [7] Information-theoretic upper and lower bounds for statistical estimation
    Zhang, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1307 - 1321
  • [8] Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory (vol 63, pg 4709, 2017)
    Braun, Gabor
    Guzman, Cristobal
    Pokutta, Sebastian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5408 - 5409
  • [9] Information-theoretic lower bounds for compressive sensing with generative models
    Liu, Zhaoqiang
    Scarlett, Jonathan
    [J]. IEEE Journal on Selected Areas in Information Theory, 2020, 1 (01): : 292 - 303
  • [10] Approximate Sparsity Pattern Recovery: Information-Theoretic Lower Bounds
    Reeves, Galen
    Gastpar, Michael C.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) : 3451 - 3465