Q-matrix Extraction from Real Response Data Using Nonnegative Matrix Factorizations

被引:9
|
作者
Casalino, Gabriella [1 ]
Castiello, Ciro [1 ]
Del Buono, Nicoletta [2 ]
Esposito, Flavia [2 ]
Mencar, Corrado [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Informat, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dept Math, I-70125 Bari, Italy
关键词
Nonnegative Matrix Factorization; Educational Data Mining; Q-matrix; Skill interpretation; CONSTRAINED LEAST-SQUARES; DISCOVERY;
D O I
10.1007/978-3-319-62392-4_15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we illustrate the use of Nonnegative Matrix Factorization (NMF) to analyze real data derived from an e-learning context. NMF is a matrix decomposition method which extracts latent information from data in such a way that it can be easily interpreted by humans. Particularly, the NMF of a score matrix can automatically generate the so called Q-matrix. In an e-learning scenario, the Q-matrix describes the abilities to be acquired by students to correctly answer evaluation exams. An example on real response data illustrates the effectiveness of this factorization method as a tool for EDM.
引用
收藏
页码:203 / 216
页数:14
相关论文
共 50 条
  • [41] A General Method of Empirical Q-matrix Validation
    de la Torre, Jimmy
    Chiu, Chia-Yi
    [J]. PSYCHOMETRIKA, 2016, 81 (02) : 253 - 273
  • [42] Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations
    Duren, Zhana
    Chen, Xi
    Zamanighomi, Mahdi
    Zeng, Wanwen
    Satpathy, Ansuman T.
    Chang, Howard Y.
    Wang, Yong
    Wong, Wing Hung
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (30) : 7723 - 7728
  • [43] PROUHET ARRAY MORPHISM AND PARIKH q-MATRIX
    Janaki, K.
    Arulprakasam, R.
    Dare, V. R.
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (02): : 345 - 362
  • [44] Theory of self-learning Q-matrix
    Liu, Jingchen
    Xu, Gongjun
    Ying, Zhiliang
    [J]. BERNOULLI, 2013, 19 (5A) : 1790 - 1817
  • [45] A General Method of Empirical Q-matrix Validation
    Jimmy de la Torre
    Chia-Yi Chiu
    [J]. Psychometrika, 2016, 81 : 253 - 273
  • [46] Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis
    Yokota, Tatsuya
    Zdunek, Rafal
    Cichocki, Andrzej
    Yamashita, Yukihiko
    [J]. SIGNAL PROCESSING, 2015, 113 : 234 - 249
  • [47] Using Regularized Methods to Validate Q-Matrix in Cognitive Diagnostic Assessment
    Fu, Daoxuan
    Qin, Chunying
    Luo, Zhaosheng
    Li, Yujun
    Yu, Xiaofeng
    Ye, Ziyu
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2024,
  • [48] Some Matrices with Padovan Q-Matrix Property
    Sompong, Supunnee
    Wora-Ngon, Natthaphat
    Piranan, Areeya
    Wongkaentow, Natnapa
    [J]. 13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [49] Improving Robustness in Q-Matrix Validation Using an Iterative and Dynamic Procedure
    Najera, Pablo
    Sorrel, Miguel A.
    de la Torre, Jimmy
    Jose Abad, Francisco
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2020, 44 (06) : 431 - 446
  • [50] Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    Miao, Lidan
    Qi, Hairong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (03): : 765 - 777