Q-matrix Extraction from Real Response Data Using Nonnegative Matrix Factorizations

被引:9
|
作者
Casalino, Gabriella [1 ]
Castiello, Ciro [1 ]
Del Buono, Nicoletta [2 ]
Esposito, Flavia [2 ]
Mencar, Corrado [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Informat, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dept Math, I-70125 Bari, Italy
关键词
Nonnegative Matrix Factorization; Educational Data Mining; Q-matrix; Skill interpretation; CONSTRAINED LEAST-SQUARES; DISCOVERY;
D O I
10.1007/978-3-319-62392-4_15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we illustrate the use of Nonnegative Matrix Factorization (NMF) to analyze real data derived from an e-learning context. NMF is a matrix decomposition method which extracts latent information from data in such a way that it can be easily interpreted by humans. Particularly, the NMF of a score matrix can automatically generate the so called Q-matrix. In an e-learning scenario, the Q-matrix describes the abilities to be acquired by students to correctly answer evaluation exams. An example on real response data illustrates the effectiveness of this factorization method as a tool for EDM.
引用
收藏
页码:203 / 216
页数:14
相关论文
共 50 条
  • [31] Nonnegative Matrix Factorizations Performing Object Detection and Localization
    Casalino, Gabriella
    Del Buono, N.
    Minervini, M.
    [J]. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2012, 2012
  • [32] A Method of Empirical Q-Matrix Validation for Multidimensional Item Response Theory
    da Silva, Marcelo Andrade
    Huggins-Manley, A. Corinne
    Bazan, Jorge Luis
    Benedict, Amber
    [J]. APPLIED MEASUREMENT IN EDUCATION, 2024, 37 (02) : 177 - 190
  • [33] An empirical Q-matrix validation method using complete information matrix in cognitive diagnostic models
    Liu Yanlou
    Wu Qiongqiong
    [J]. ACTA PSYCHOLOGICA SINICA, 2023, 55 (01) : 142 - 158
  • [34] Sequential and parallel feature extraction in hyperspectral data using Nonnegative Matrix Factorization
    Robila, Stefan A.
    Maciak, Lukasz G.
    [J]. 2007 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE, 2007, : 18 - 24
  • [35] The Q-Matrix Anchored Mixture Rasch Model
    Tseng, Ming-Chi
    Wang, Wen-Chung
    [J]. FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [36] Statistical Refinement of the Q-Matrix in Cognitive Diagnosis
    Chiu, Chia-Yi
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2013, 37 (08) : 598 - 618
  • [37] Generalized Fibonacci sequences and a generalization of the Q-matrix
    Zhang, ZZ
    [J]. FIBONACCI QUARTERLY, 1999, 37 (03): : 203 - 207
  • [38] Investigation of Missing Responses in Q-Matrix Validation
    Dai, Shenghai
    Svetina, Dubravka
    Chen, Cong
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2018, 42 (08) : 660 - 676
  • [39] Data-driven Q-matrix learning based on Boolean matrix factorization in cognitive diagnostic assessment
    Xiong, Jianhua
    Luo, Zhaosheng
    Luo, Guanzhong
    Yu, Xiaofeng
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2022, 75 (03): : 638 - 667
  • [40] SUFFICIENT AND NECESSARY CONDITIONS FOR THE IDENTIFIABILITY OF THE Q-MATRIX
    Gu, Yuqi
    Xu, Gongjun
    [J]. STATISTICA SINICA, 2021, 31 (01) : 449 - 472