Q-matrix Extraction from Real Response Data Using Nonnegative Matrix Factorizations

被引:9
|
作者
Casalino, Gabriella [1 ]
Castiello, Ciro [1 ]
Del Buono, Nicoletta [2 ]
Esposito, Flavia [2 ]
Mencar, Corrado [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Informat, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dept Math, I-70125 Bari, Italy
关键词
Nonnegative Matrix Factorization; Educational Data Mining; Q-matrix; Skill interpretation; CONSTRAINED LEAST-SQUARES; DISCOVERY;
D O I
10.1007/978-3-319-62392-4_15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we illustrate the use of Nonnegative Matrix Factorization (NMF) to analyze real data derived from an e-learning context. NMF is a matrix decomposition method which extracts latent information from data in such a way that it can be easily interpreted by humans. Particularly, the NMF of a score matrix can automatically generate the so called Q-matrix. In an e-learning scenario, the Q-matrix describes the abilities to be acquired by students to correctly answer evaluation exams. An example on real response data illustrates the effectiveness of this factorization method as a tool for EDM.
引用
收藏
页码:203 / 216
页数:14
相关论文
共 50 条
  • [1] Data-Driven Learning of Q-Matrix
    Liu, Jingchen
    Xu, Gongjun
    Ying, Zhiliang
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2012, 36 (07) : 548 - 564
  • [2] Q-MATRIX IDENTITY
    SINGH, S
    FILIPPONI, P
    [J]. FIBONACCI QUARTERLY, 1986, 24 (04): : 374 - 375
  • [3] Stable Biclustering of Gene Expression Data with Nonnegative Matrix Factorizations
    Badea, Liviu
    Tilivea, Doina
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2651 - 2656
  • [4] Intelligent Twitter Data Analysis Based on Nonnegative Matrix Factorizations
    Casalino, Gabriella
    Castiello, Ciro
    Del Buono, Nicoletta
    Mencar, Corrado
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT I, 2017, 10404 : 188 - 202
  • [5] A mixed iteration for nonnegative matrix factorizations
    Soltuz, Stefan M.
    Rhoades, B. E.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) : 9847 - 9855
  • [6] Hypothesis Testing of the Q-matrix
    Yuqi Gu
    Jingchen Liu
    Gongjun Xu
    Zhiliang Ying
    [J]. Psychometrika, 2018, 83 : 515 - 537
  • [7] THE Q-MATRIX COMPLETION PROBLEM
    Dealba, Luz Maria
    Hogben, Leslie
    Sarma, Bhaba Kumar
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 176 - 191
  • [8] COUNTEREXAMPLES TO Q-MATRIX CONJECTURES
    MORRIS, WD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 111 : 135 - 145
  • [9] Hypothesis Testing of the Q-matrix
    Gu, Yuqi
    Liu, Jingchen
    Xu, Gongjun
    Ying, Zhiliang
    [J]. PSYCHOMETRIKA, 2018, 83 (03) : 515 - 537
  • [10] Q-Matrix Estimation Methods for Cognitive Diagnosis Models: Based on Partial Known Q-Matrix
    Wang, Daxun
    Cai, Yan
    Tu, Dongbo
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (03) : 514 - 526