On the problem of dynamical localization in the nonlinear Schrodinger equation with a random potential

被引:26
|
作者
Fishman, Shmuel [1 ]
Krivolapov, Yevgeny [1 ]
Soffer, Avy [2 ,3 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[3] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
基金
美国国家科学基金会; 以色列科学基金会;
关键词
Anderson localization; NLSE; random potential; nonlinear Schrodinger; dynamical localization;
D O I
10.1007/s10955-007-9472-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a dynamical localization in the nonlinear Schrodinger equation with a random potential for times of the order of O(beta(-2))' where beta is the strength of the nonlinearity.
引用
收藏
页码:843 / 865
页数:23
相关论文
共 50 条
  • [1] On the Problem of Dynamical Localization in the Nonlinear Schrödinger Equation with a Random Potential
    Shmuel Fishman
    Yevgeny Krivolapov
    Avy Soffer
    [J]. Journal of Statistical Physics, 2008, 131 : 843 - 865
  • [2] Nonlinear Schrodinger equation with a random potential
    Bourgain, Jean
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (01) : 183 - 188
  • [3] Random input problem for the nonlinear Schrodinger equation
    Derevyanko, Stanislav A.
    Prilepsky, Jaroslaw E.
    [J]. PHYSICAL REVIEW E, 2008, 78 (04):
  • [4] Approximation diffusion for the Nonlinear Schrodinger equation with a random potential
    Barrue, Gregoire
    Debussche, Arnaud
    Tusseau, Maxime
    [J]. ASYMPTOTIC ANALYSIS, 2024, 138 (03) : 175 - 224
  • [5] Perturbation theory for the nonlinear Schrodinger equation with a random potential
    Fishman, Shmuel
    Krivolapov, Yevgeny
    Soffer, Avy
    [J]. NONLINEARITY, 2009, 22 (12) : 2861 - 2887
  • [6] The nonlinear Schrodinger equation with a random potential: results and puzzles
    Fishman, Shmuel
    Krivolapov, Yevgeny
    Soffer, Avy
    [J]. NONLINEARITY, 2012, 25 (04)
  • [7] Long Time Anderson Localization for the Nonlinear Random Schrodinger Equation
    Wang, W. -M.
    Zhang, Zhifei
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (5-6) : 953 - 968
  • [8] Schrodinger Equation with Quartic Potential and Nonlinear Filtering Problem
    Chang, Der-Chen
    You, Stephen S. -T.
    Lin, Ke-Pao
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 8089 - 8094
  • [9] The dynamical inverse problem for a nonlinear Schrodinger equation using boundary control
    Tomas-Rodriguez, M
    Banks, SP
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 732 - 735
  • [10] Inverse problem for a random Schrodinger equation with unknown source and potential
    Liu, Hongyu
    Ma, Shiqi
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (02)