On the Problem of Dynamical Localization in the Nonlinear Schrödinger Equation with a Random Potential

被引:0
|
作者
Shmuel Fishman
Yevgeny Krivolapov
Avy Soffer
机构
[1] Technion—Israel Institute of Technology,Physics Department
[2] Rutgers University,Mathematics Department
[3] Weizmann Institute,Mathematics Department
来源
关键词
Anderson localization; NLSE; Random potential; Nonlinear Schrödinger; Dynamical localization;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a dynamical localization in the nonlinear Schrödinger equation with a random potential for times of the order of O(β−2), where β is the strength of the nonlinearity.
引用
收藏
页码:843 / 865
页数:22
相关论文
共 50 条
  • [1] On the problem of dynamical localization in the nonlinear Schrodinger equation with a random potential
    Fishman, Shmuel
    Krivolapov, Yevgeny
    Soffer, Avy
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (05) : 843 - 865
  • [2] Long Time Anderson Localization for the Nonlinear Random Schrödinger Equation
    W.-M. Wang
    Zhifei Zhang
    [J]. Journal of Statistical Physics, 2009, 134 : 953 - 968
  • [3] Dynamical Localization for the Random Dimer Schrödinger Operator
    Stephan De Bièvre
    François Germinet
    [J]. Journal of Statistical Physics, 2000, 98 : 1135 - 1148
  • [4] Inverse problem for a random Schrödinger equation with unknown source and potential
    Hongyu Liu
    Shiqi Ma
    [J]. Mathematische Zeitschrift, 2023, 304
  • [5] The inverse problem for a nonlinear Schrödinger equation
    Yagubov G.Ya.
    Musaeva M.A.
    [J]. Journal of Mathematical Sciences, 1999, 97 (2) : 3981 - 3984
  • [6] Dynamical behaviour of Chiral nonlinear Schrödinger equation
    Lanre Akinyemi
    Mustafa Inc
    Mostafa M. A. Khater
    Hadi Rezazadeh
    [J]. Optical and Quantum Electronics, 2022, 54
  • [7] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    [J]. Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [8] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    [J]. Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [9] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    [J]. Mathematische Annalen, 1999, 313 : 15 - 37
  • [10] Anderson localization in the quintic nonlinear Schrödinger equation
    Wesley B. Cardoso
    Salviano A. Leão
    Ardiley T. Avelar
    [J]. Optical and Quantum Electronics, 2016, 48