Adaptive Feature Fusion Based Cooperative 3D Object Detection for Autonomous Driving

被引:0
|
作者
Wang, Junyong [1 ]
Zeng, Yuan [2 ]
Gong, Yi [3 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Dept Elect & Elect Engn, Shenzhen, Peoples R China
[2] SUSTech, Acad Adv Interdisciplinary Studies, Shenzhen, Peoples R China
[3] SUSTech, Dept Elect & Elect Engn, Shenzhen, Peoples R China
关键词
cooperative perception; adaptive feature fusion; autonomous driving; 3D object detection;
D O I
10.1109/ICTC55111.2022.9778731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we focus on the collaborative 3D object detection problem in autonomous vehicle systems in which autonomous vehicles can improve their detection accuracy by aggregating the information received from spatially diverse sensors through wireless links. We propose a novel adaptive feature fusion based cooperative 3D object detection framework, which consists of feature transformation networks and an improved region proposal network. The framework learns to fuse features from different views to improve object detection accuracy on the autonomous vehicle. To evaluate the proposed method, we build a new synthetic dataset created in two driving scenarios (a Roundabout and a T-junction). Experiment analysis and results demonstrate that the proposed adaptive feature fusion approach performs better than two baseline approaches in terms of detection accuracy.
引用
收藏
页码:103 / 107
页数:5
相关论文
共 50 条
  • [21] A Decision Fusion Model for 3D Detection of Autonomous Driving
    Ye, Zhen
    Xue, Jianru
    Fang, Jianwu
    Dou, Jian
    Pan, Yuxin
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3773 - 3777
  • [22] Keypoints-Based Deep Feature Fusion for Cooperative Vehicle Detection of Autonomous Driving
    Yuan, Yunshuang
    Cheng, Hao
    Sester, Monika
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3054 - 3061
  • [23] 3D Object Detection Based on Feature Fusion of Point Cloud Sequences
    Zhai, Zhenyu
    Wang, Qiantong
    Pan, Zongxu
    Hu, Wenlong
    Hu, Yuxin
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1240 - 1245
  • [24] Autonomous Driving 3D Object Detection Based on Cascade YOLOv7
    Zhao D.
    Zhao S.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (07): : 1112 - 1122
  • [25] 3D object detection algorithm based on multi-sensor segmental fusion of frustum association for autonomous driving
    Tao, Chongben
    Bian, Weitao
    Wang, Chen
    Li, Huayi
    Gao, Zhen
    Zhang, Zufeng
    Zheng, Sifa
    Zhu, Yuan
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22753 - 22774
  • [26] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776
  • [27] 3D object detection algorithm based on multi-sensor segmental fusion of frustum association for autonomous driving
    Chongben Tao
    Weitao Bian
    Chen Wang
    Huayi Li
    Zhen Gao
    Zufeng Zhang
    Sifa Zheng
    Yuan Zhu
    Applied Intelligence, 2023, 53 : 22753 - 22774
  • [28] Stereo R-CNN based 3D Object Detection for Autonomous Driving
    Li, Peiliang
    Chen, Xiaozhi
    Shen, Shaojie
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7636 - 7644
  • [29] A Survey on 3D Object Detection Methods for Autonomous Driving Applications
    Arnold, Eduardo
    Al-Jarrah, Omar Y.
    Dianati, Mehrdad
    Fallah, Saber
    Oxtoby, David
    Mouzakitis, Alex
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3782 - 3795
  • [30] 3D Object Detection From Images for Autonomous Driving: A Survey
    Ma, Xinzhu
    Ouyang, Wanli
    Simonelli, Andrea
    Ricci, Elisa
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3537 - 3556