Geometry and observables in (2+1)-gravity

被引:0
|
作者
Meusburger, C. [1 ]
机构
[1] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
关键词
General relativity; Quantum gravity; Three-dimensional gravity; Teichmuller geometry; Wilson loops; COSMOLOGICAL CONSTANT;
D O I
10.1007/s10714-010-0981-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review the geometrical properties of vacuum spacetimes in (2+1)-gravity with vanishing cosmological constant. We explain how these spacetimes are characterised as quotients of their universal cover by holonomies. We explain how this description can be used to clarify the geometrical interpretation of the fundamental physical variables of the theory, holonomies and Wilson loops. In particular, we discuss the role of Wilson loop observables as the generators of the two fundamental transformations that change the geometry of (2+1)-spacetimes, grafting and earthquake. We explain how these variables can be determined from realistic measurements by an observer in the spacetime.
引用
收藏
页码:2409 / 2420
页数:12
相关论文
共 50 条
  • [21] QUANTUM ASPECTS OF 2+1 GRAVITY
    LOLL, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6494 - 6509
  • [22] Cosmological time in (2+1)-gravity
    Benedetti, R
    Guadagnini, E
    NUCLEAR PHYSICS B, 2001, 613 (1-2) : 330 - 352
  • [23] On a spacetime duality in 2+1 gravity
    Corichi, A
    Gomberoff, A
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (11) : 3579 - 3598
  • [24] 2+1 QUANTUM-GRAVITY
    NELSON, JE
    REGGE, T
    PHYSICS LETTERS B, 1991, 272 (3-4) : 213 - 216
  • [25] 2+1 gravity on the conformal sphere
    Gryb, Sean
    Mercati, Flavio
    PHYSICAL REVIEW D, 2013, 87 (06)
  • [26] Canonical theory of 2+1 gravity
    Kenmoku, M
    Matsuyama, T
    Sato, R
    Uchida, S
    FROM PARTICLES TO THE UNIVERSE, 2001, : 295 - 299
  • [27] LECTURES ON (2+1)-DIMENSIONAL GRAVITY
    CARLIP, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1995, 28 : S447 - S467
  • [28] Magnetic solutions to 2+1 gravity
    Hirschmann, EW
    Welch, DL
    PHYSICAL REVIEW D, 1996, 53 (10): : 5579 - 5582
  • [29] Isolated Horizons in 2+1 Gravity
    Ashtekar, Abhay
    Dreyer, Olaf
    Wisniewski, Jacek
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 6 (03) : 507 - 555
  • [30] Quadratic gravity in (2+1)D
    Accioly, A
    Azeredo, A
    Mukai, H
    MODERN PHYSICS LETTERS A, 2001, 16 (22) : 1449 - 1456