Asymptotic behaviour of non-autonomous discrete complex Ginzburg-Landau equations driven by nonlinear noise

被引:2
|
作者
Zou, Aihong [1 ,2 ]
Zhang, Lu [1 ,2 ]
Yan, Tao [1 ,2 ]
Shu, Ji [1 ,2 ]
机构
[1] Sichuan Normal Univ, Laurent Math Ctr, Sch Math Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete Ginzburg-Landau equation; weak random attractor; nonlinear noise; mean random dynamical systems; TRAVELING-WAVES; PULLBACK ATTRACTORS; PROPAGATION; EXISTENCE; SYSTEMS; DYNAMICS;
D O I
10.1080/10236198.2021.1957857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider dynamical behaviour for stochastic discrete complex Ginzburg-Landau equations driven by locally Lipschitz nonlinear noise. Weprove the existence and uniqueness of solutions. Thus the solution operators generate mean random dynamical systems. Finally, the existence and uniqueness for weak pullback random attractors in l (2) are established.
引用
收藏
页码:947 / 965
页数:19
相关论文
共 50 条
  • [21] Asymptotic behaviour of the time-dependent Ginzburg-Landau equations
    Berti, V
    Applied and Industrial Mathematics in Italy, 2005, 69 : 136 - 142
  • [22] Preconditioned method for the nonlinear complex Ginzburg-Landau equations
    Chen, Lei
    Zhang, Lu
    Zhou, Wenyu
    WIRELESS NETWORKS, 2021, 27 (06) : 3701 - 3708
  • [23] Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations
    Zhang, Jian
    Shu, Ji
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [24] Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity
    Rodriguez-Bernal, A
    Wang, BX
    Willie, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (18) : 1647 - 1669
  • [25] Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian
    Li, Fang
    You, Bo
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (02): : 233 - 248
  • [26] Asymptotic analysis for the Ginzburg-Landau equations.
    Rivière, T
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (03): : 537 - 575
  • [27] The Cauchy Problem for Nonlinear Complex Ginzburg-Landau Type Equations
    Nakamura, Makoto
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 515 - 519
  • [28] Irreducibility of Stochastic Complex Ginzburg-Landau Equations Driven by Pure Jump Noise and Its Applications
    Hao Yang
    Jian Wang
    Jianliang Zhai
    Applied Mathematics & Optimization, 2024, 89
  • [29] Irreducibility of Stochastic Complex Ginzburg-Landau Equations Driven by Pure Jump Noise and Its Applications
    Yang, Hao
    Wang, Jian
    Zhai, Jianliang
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (02):
  • [30] Dynamics of Fractional Stochastic Ginzburg-Landau Equation Driven by Nonlinear Noise
    Lu, Hong
    Wang, Linlin
    Zhang, Mingji
    MATHEMATICS, 2022, 10 (23)