Resonance equals reducibility for A-hypergeometric systems

被引:23
|
作者
Schulze, Mathias [1 ]
Walther, Uli [2 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
toric; hypergeometric; Euler-Koszul; D-module; resonance; monodromy; RANK;
D O I
10.2140/ant.2012.6.527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical theorems of Gel'fand et al. and recent results of Beukers show that nonconfluent Cohen-Macaulay A-hypergeometric systems have reducible monodromy representation if and only if the continuous parameter is A-resonant. We remove both the confluence and Cohen-Macaulayness conditions while simplifying the proof.
引用
收藏
页码:527 / 537
页数:11
相关论文
共 50 条