共 50 条
Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics
被引:13
|作者:
Brigante, Federico, I
[1
,2
,3
,4
]
Podio, Natalia S.
[1
,2
,3
,4
]
Wunderlin, Daniel A.
[1
,2
,3
,4
]
Baroni, Maria, V
[1
,2
,3
,4
]
机构:
[1] Consejo Nacl Invest Cient & Tecn, ICYTAC Inst Ciencia & Tecnol Alimentos Cordoba, Bv Dr Juan Filloy S-N,Cdad Univ, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, Bv Dr Juan Filloy S-N,Cdad Univ, RA-5000 Cordoba, Argentina
[3] Univ Nacl Cordoba, Fac Ciencias Quim, Dept Quim Organ, Edif Ciencias 2,Cdad Univ, RA-5000 Cordoba, Argentina
[4] Univ Nacl Cordoba, Fac Ciencias Quim, ISIDSA SECyT, Edif Ciencias 2,Cdad Univ, RA-5000 Cordoba, Argentina
来源:
关键词:
Untargeted metabolomics;
Food authenticity;
Nutritive seeds;
PCA;
OPLS-DA;
MASS;
IDENTIFICATION;
FOODS;
FLOUR;
D O I:
10.1016/j.foodchem.2021.131355
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
Chia, flax, and sesame seeds are well known for their nutritional quality and are commonly included in bakery products. So far, the development of methods to verify their presence and authenticity in foods is a requisite and a raised need. In this work we applied untargeted metabolomics to propose authenticity markers. Seeds were analyzed by HPLC-MS/MS and 9938 features in negative mode and 9044 in positive mode were obtained by Mzmine. After isotopes grouping, alignment, gap-filling, filtering adducts, and normalization, PCA was applied to explore the dataset and recognize pre-existent classification patterns. OPLS-DA analysis and S-Plots were used as supervised methods. Twenty-five molecules (12 in negative mode and 13 in positive mode) were selected as discriminant for the three seeds, polyphenols and lignans were identified among them. To the best of our knowledge, this is the first approach using non-target HPLC-MS/MS for the authentication of chia, flax and sesame seeds.
引用
收藏
页数:11
相关论文