CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network

被引:47
|
作者
Senan, Oriol [1 ]
Aguilar-Mogas, Antoni [1 ]
Navarro, Miriam [2 ,3 ]
Capellades, Jordi [2 ,3 ]
Noon, Luke [3 ,4 ]
Burks, Deborah [3 ,4 ]
Yanes, Oscar [2 ,3 ]
Guimera, Roger [1 ,5 ]
Sales-Pardo, Marta [1 ]
机构
[1] Univ Rovira & Virgili, IISPV, Dept Chem Engn, E-43007 Tarragona, Spain
[2] Univ Rovira & Virgili, IISPV, Dept Elect Engn, Metab Platform, E-43007 Tarragona, Spain
[3] CIBER Diabet & Associated Metab Dis CIBERDEM, Madrid 28029, Spain
[4] Ctr Invest Principe Felipe, Valencia 46012, Spain
[5] ICREA, Barcelona 08010, Spain
关键词
R PACKAGE; SPECTRA EXTRACTION; IDENTIFICATION; PREDICTION;
D O I
10.1093/bioinformatics/btz207
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The analysis of biological samples in untargeted metabolomic studies using LC-MS yields tens of thousands of ion signals. Annotating these features is of the utmost importance for answering questions as fundamental as, e.g. how many metabolites are there in a given sample. Results: Here, we introduce CliqueMS, a new algorithm for annotating in-source LC-MS1 data. CliqueMS is based on the similarity between coelution profiles and therefore, as opposed to most methods, allows for the annotation of a single spectrum. Furthermore, CliqueMS improves upon the state of the art in several dimensions: (i) it uses a more discriminatory feature similarity metric; (ii) it treats the similarities between features in a transparent way by means of a simple generative model; (iii) it uses a well-grounded maximum likelihood inference approach to group features; (iv) it uses empirical adduct frequencies to identify the parental mass and (v) it deals more flexibly with the identification of the parental mass by proposing and ranking alternative annotations. We validate our approach with simple mixtures of standards and with real complex biological samples. CliqueMS reduces the thousands of features typically obtained in complex samples to hundreds of metabolites, and it is able to correctly annotate more metabolites and adducts from a single spectrum than available tools.
引用
收藏
页码:4089 / 4097
页数:9
相关论文
共 20 条
  • [1] Network Marker Selection for Untargeted LC-MS Metabolomics Data
    Cai, Qingpo
    Alvarez, Jessica A.
    Kang, Jian
    Yu, Tianwei
    [J]. JOURNAL OF PROTEOME RESEARCH, 2017, 16 (03) : 1261 - 1269
  • [2] Incorporating In-Source Fragment Information Improves Metabolite Identification Accuracy in Untargeted LC-MS Data Sets
    Seitzer, Phillip M.
    Searle, Brian C.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 791 - 796
  • [3] Post-column in-source derivatisation in LC-MS: a tool for natural products characterisation and metabolomics
    Cirigliano, Adriana M.
    Cabrera, Gabriela M.
    [J]. PHYTOCHEMICAL ANALYSIS, 2020, 31 (05) : 606 - 615
  • [4] A Python']Python-Based Pipeline for Preprocessing LC-MS Data for Untargeted Metabolomics Workflows
    Riquelme, Gabriel
    Zabalegui, Nicolas
    Marchi, Pablo
    Jones, Christina M.
    Monge, Maria Eugenia
    [J]. METABOLITES, 2020, 10 (10) : 1 - 14
  • [5] Heterogeneous multimeric metabolite ion species observed in LC-MS based metabolomics data sets
    El Abiead, Yasin
    Bueschl, Christoph
    Panzenboeck, Lisa
    Wang, Mingxun
    Doppler, Maria
    Seidl, Bernhard
    Zanghellini, Juergen
    Dorrestein, Pieter C.
    Koellensperger, Gunda
    [J]. ANALYTICA CHIMICA ACTA, 2022, 1229
  • [6] geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics
    Capellades, Jordi
    Navarro, Miriam
    Samino, Sara
    Garcia-Ramirez, Marta
    Hernandez, Cristina
    Simo, Rafael
    Vinaixa, Maria
    Yanes, Oscar
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (01) : 621 - 628
  • [7] Knowledge integration strategies for untargeted metabolomics based on MCR-ALS analysis of CE-MS and LC-MS data
    Ortiz-Villanueva, Elena
    Benavente, Fernando
    Pina, Benjamin
    Sanz-Nebot, Victoria
    Tauler, Roma
    Jaumot, Joaquim
    [J]. ANALYTICA CHIMICA ACTA, 2017, 978 : 10 - 23
  • [8] PiMP my metabolome: an integrated, web-based tool for LC-MS metabolomics data
    Gloaguen, Yoann
    Morton, Fraser
    Daly, Ronan
    Gurden, Ross
    Rogers, Simon
    Wandy, Joe
    Wilson, David
    Barrett, Michael
    Burgess, Karl
    [J]. BIOINFORMATICS, 2017, 33 (24) : 4007 - 4009
  • [9] Hydrogen-Deuterium Scrambling Based on Chemical Isotope Labeling Coupled with LC-MS: Application to Amine Metabolite Identification in Untargeted Metabolomics
    Zheng, Shu-Jian
    Zheng, Jie
    Xiong, Cai-Feng
    Xiao, Hua-Ming
    Liu, Shi-Jie
    Feng, Yu-Qi
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (02) : 2043 - 2051
  • [10] A Case Report of Switching from Specific Vendor-Based to R-Based Pipelines for Untargeted LC-MS Metabolomics
    Fernandez-Ochoa, Alvaro
    Quirantes-Pine, Rosa
    Borras-Linares, Isabel
    Cadiz-Gurrea, Maria de la Luz
    Alarcon Riquelme, Marta E.
    Brunius, Carl
    Segura-Carretero, Antonio
    [J]. METABOLITES, 2020, 10 (01)