Spectral decomposition of piecewise linear monotonic maps

被引:9
|
作者
Antoniou, I [1 ]
Qiao, BI [1 ]
机构
[1] FREE UNIV BRUSSELS,INT SOLVAY INST CHEM,B-1050 BRUSSELS,BELGIUM
关键词
D O I
10.1016/S0960-0779(96)00020-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a generalized spectral decomposition of the Frobenius-Perron operator for one class of piecewise linear monotonic maps by using a general, iterative, operator method which is applicable in principle for any mixing dynamical system. The Jordan block structure is specified and analyzed. The eigenvalues in the decomposition are related to the decay rates of the correlation functions. We explicitly define appropriate generalized function spaces, which provide mathematical meaning to the spectral decomposition. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1895 / 1911
页数:17
相关论文
共 50 条
  • [41] Piecewise-linear soliton equations and piecewise-linear integrable maps
    Quispel, GRW
    Capel, HW
    Scully, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2491 - 2503
  • [42] Piecewise linear maps with heterogeneous chaos
    Saiki, Yoshitaka
    Takahasi, Hiroki
    Yorke, James A.
    [J]. NONLINEARITY, 2021, 34 (08) : 5744 - 5761
  • [43] Piecewise linear model for tree maps
    Baillif, M
    de Carvalho, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (12): : 3163 - 3169
  • [44] Analysis of spatiotemporally periodic behavior in lattices of coupled piecewise monotonic maps
    Chatterjee, N
    Gupte, N
    [J]. PHYSICAL REVIEW E, 2001, 63 (01):
  • [45] Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity
    Li, Yurong
    Du, Zhengdong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [46] Large deviation principle for piecewise monotonic maps with density of periodic measures
    Chung, Yong Moo
    Yamamoto, Kenichiro
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (03) : 861 - 872
  • [47] Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity
    Yurong Li
    Zhengdong Du
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [48] Spectral decomposition of Chebyshev maps
    Qiao, B
    Antoniou, I
    [J]. PHYSICA A, 1996, 233 (1-2): : 449 - 457
  • [49] PIECEWISE LINEAR PATHS TO MINIMIZE CONVEX FUNCTIONS MAY NOT BE MONOTONIC
    TODD, MJ
    [J]. MATHEMATICAL PROGRAMMING, 1979, 17 (01) : 106 - 108
  • [50] A Decomposition Theorem for the Least Squares Piecewise Monotonic Data Approximation Problem
    Demetriou, Ioannis C.
    [J]. APPROXIMATION AND OPTIMIZATION: ALGORITHMS, COMPLEXITY AND APPLICATIONS, 2019, 145 : 119 - 134