NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

被引:31
|
作者
Schoen, Tomasz [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
LONG ARITHMETIC PROGRESSIONS; SUMSETS; SETS; PROOF; ERDOS;
D O I
10.1215/00127094-1276283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if for a finite set A of integers we have vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a generalized arithmetic progression of dimension at most K1+C(log K)-1/2 and of size at most exp(K1+C(log K)-1/2)vertical bar A vertical bar for some absolute constant C. We also discuss a number of applications of this result.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Near optimal bounds for the Erdős distinct distances problem in high dimensions
    József Solymosi
    Van H. Vu
    Combinatorica, 2008, 28 : 113 - 125
  • [32] The Freiman-Ruzsa theorem over finite fields
    Even-Zohar, Chaim
    Lovett, Shachar
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 : 333 - 341
  • [34] Bounds in Cohen’s Idempotent Theorem
    Tom Sanders
    Journal of Fourier Analysis and Applications, 2020, 26
  • [35] Bounds for Hilbert's irreducibility theorem
    Debes, Pierre
    Walkowiak, Yann
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (04) : 1059 - 1083
  • [36] Compressions, convex geometry and the Freiman-Bilu theorem
    Green, B.
    Tao, T.
    QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 495 - 504
  • [37] NEAR OPTIMAL BOUNDS FOR STEINER TREES IN THE HYPERCUBE
    Jiang, Tao
    Miller, Zevi
    Pritikin, Dan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (05) : 1340 - 1360
  • [38] NEAR-OPTIMAL BOUNDS FOR PHASE SYNCHRONIZATION
    Zhong, Yiqiao
    Boumal, Nicolas
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 989 - 1016
  • [39] NEAR-OPTIMAL CODED APERTURES FOR IMAGING VIA NAZAROV'S THEOREM
    Ajjanagadde, Ganesh
    Thrampoulidis, Christos
    Yedidia, Adam
    Wornell, Gregory
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7690 - 7694
  • [40] Characterisation of Meyer sets via the Freiman-Ruzsa theorem
    Konieczny, Jakub
    JOURNAL OF NUMBER THEORY, 2023, 253 : 278 - 294