LONG ARITHMETIC PROGRESSIONS;
SUMSETS;
SETS;
PROOF;
ERDOS;
D O I:
10.1215/00127094-1276283
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that if for a finite set A of integers we have vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a generalized arithmetic progression of dimension at most K1+C(log K)-1/2 and of size at most exp(K1+C(log K)-1/2)vertical bar A vertical bar for some absolute constant C. We also discuss a number of applications of this result.
机构:
Univ Kentucky, Dept Math, 715 Patterson Off Tower, Lexington, KY 40506 USAUniv Kentucky, Dept Math, 715 Patterson Off Tower, Lexington, KY 40506 USA
Shao, Xuancheng
Xu, Wenqiang
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Math, Gower St, London WC1E 6BT, EnglandUniv Kentucky, Dept Math, 715 Patterson Off Tower, Lexington, KY 40506 USA
机构:
Univ Paris 13, Sorbonne Paris Cite, CNRS UMR 7539, F-93430 Villetaneuse, FranceUniv Paris 13, Sorbonne Paris Cite, CNRS UMR 7539, F-93430 Villetaneuse, France
Matheus, Carlos
Moreira, Carlos Gustavo
论文数: 0引用数: 0
h-index: 0
机构:
IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, BrazilUniv Paris 13, Sorbonne Paris Cite, CNRS UMR 7539, F-93430 Villetaneuse, France