NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

被引:31
|
作者
Schoen, Tomasz [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
LONG ARITHMETIC PROGRESSIONS; SUMSETS; SETS; PROOF; ERDOS;
D O I
10.1215/00127094-1276283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if for a finite set A of integers we have vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a generalized arithmetic progression of dimension at most K1+C(log K)-1/2 and of size at most exp(K1+C(log K)-1/2)vertical bar A vertical bar for some absolute constant C. We also discuss a number of applications of this result.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] A robust version of Freiman's 3k-4 Theorem and applications
    Shao, Xuancheng
    Xu, Wenqiang
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2019, 166 (03) : 567 - 581
  • [22] A note on bounds for the odds theorem of optimal stopping
    Bruss, FT
    ANNALS OF PROBABILITY, 2003, 31 (04): : 1859 - 1861
  • [23] IMPROVED OPTIMAL BOUNDS USING WATSON THEOREM
    MICU, M
    PHYSICAL REVIEW D, 1973, 7 (07): : 2136 - 2138
  • [24] A Freiman-type Theorem for restricted sumsets
    Daza, David
    Huicochea, Mario
    Martos, Carlos
    Trujillo, Carlos
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (10) : 2309 - 2332
  • [25] On Explicit Bounds in Picard’s Theorem and Schottky’s Theorem
    张顺燕
    数学进展, 1989, (01) : 114 - 115
  • [26] Markov spectrum near Freiman's isolated points in M\L
    Matheus, Carlos
    Moreira, Carlos Gustavo
    JOURNAL OF NUMBER THEORY, 2019, 194 : 390 - 408
  • [27] A model-theoretic note on the Freiman–Ruzsa theorem
    Amador Martin-Pizarro
    Daniel Palacín
    Julia Wolf
    Selecta Mathematica, 2021, 27
  • [28] OPTIMAL ERROR BOUNDS FOR NEWTON-KANTOROVICH THEOREM
    GRAGG, WB
    TAPIA, RA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) : 10 - 13
  • [29] FREIMAN THEOREM, FOURIER TRANSFORM AND ADDITIVE STRUCTURE OF MEASURES
    Iosevich, A.
    Rudnev, M.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (01) : 97 - 109
  • [30] Almost Optimal Bounds for Direct Product Threshold Theorem
    Jutla, Charanjit S.
    THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2010, 5978 : 37 - 51