NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

被引:31
|
作者
Schoen, Tomasz [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
LONG ARITHMETIC PROGRESSIONS; SUMSETS; SETS; PROOF; ERDOS;
D O I
10.1215/00127094-1276283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if for a finite set A of integers we have vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a generalized arithmetic progression of dimension at most K1+C(log K)-1/2 and of size at most exp(K1+C(log K)-1/2)vertical bar A vertical bar for some absolute constant C. We also discuss a number of applications of this result.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Polylogarithmic bounds in the nilpotent Freiman theorem
    Tointon, Matthew C. H.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2021, 170 (01) : 111 - 127
  • [2] A polynomial bound in Freiman's theorem
    Chang, MC
    DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) : 399 - 419
  • [3] An analog of Freiman's theorem in groups
    Ruzsa, IZ
    ASTERISQUE, 1999, (258) : 323 - 326
  • [4] Freiman's theorem in an arbitrary abelian group
    Green, Ben
    Ruzsa, Imre Z.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 163 - 175
  • [5] On Waring's problem: Beyond Freiman's theorem
    Bruedern, Joerg
    Wooley, Trevor D.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [6] A note on Freiman's theorem in vector spaces
    Sanders, T.
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02): : 297 - 305
  • [7] Freiman's theorem in an arbitrary nilpotent group
    Tointon, Matthew C. H.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 318 - 352
  • [8] On a theorem of Deshouillers and Freiman
    Balasubramanian, R.
    Pandey, Prem Prakash
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 284 - 296
  • [9] The relevance of Freiman's theorem for combinatorial commutative algebra
    Herzog, Juergen
    Hibi, Takayuki
    Zhu, Guangjun
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) : 999 - 1014
  • [10] The relevance of Freiman’s theorem for combinatorial commutative algebra
    Jürgen Herzog
    Takayuki Hibi
    Guangjun Zhu
    Mathematische Zeitschrift, 2019, 291 : 999 - 1014