Criticality of the random-site Ising model: Metropolis, Swendsen-Wang and Wolff Monte Carlo algorithms

被引:15
|
作者
Ivaneyko, D [1 ]
Ilnytskyi, J
Berche, B
Holovatch, Y
机构
[1] Ivan Franko Natl Univ Lviv, UA-79005 Lvov, Ukraine
[2] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine
[3] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[4] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
关键词
Ising model; quenched disorder; Monte Carlo; cluster algorithms; criticality;
D O I
10.5488/CMP.8.1.149
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We apply numerical simulations to study of the criticality of the 3D Ising model with random site quenched dilution. The emphasis is given to the issues not being discussed in detail before. In particular, we attempt a comparison of different Monte Carlo techniques, discussing regions of their applicability and advantages/disadvantages depending on the aim of a particular simulation set. Moreover, besides evaluation of the critical indices we estimate the universal ratio Gamma(+)/Gamma(-) for the magnetic susceptibility critical amplitudes. Our estimate Gamma(+)/Gamma(-) = 1.67 +/- 0.15 is in a good agreement with the recent MC analysis of the random-bond Ising model giving further support that both random-site and random-bond dilutions lead to the same universality class.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [31] Monte Carlo simulations of the random-field Ising model
    Barber, W.C.
    Belanger, D.P.
    Journal of Magnetism and Magnetic Materials, 2001, 226-230 (PART I) : 545 - 547
  • [32] Local and cluster critical dynamics of the 3d random-site Ising model
    Ivaneyko, D.
    Ilnytskyi, J.
    Berche, B.
    Holovatch, Yu.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 370 (02) : 163 - 178
  • [33] A threaded Java']Java concurrent implementation of the Monte-Carlo Metropolis Ising model
    Castaneda-Marroquin, Carlos
    de la Puente, Alfonso Ortega
    Alfonseca, Manuel
    Glazier, James A.
    Swat, Maciej
    7TH INDUSTRIAL SIMULATION CONFERENCE 2009, 2009, : 103 - +
  • [34] Monte Carlo study of the metamagnet Ising model in a random and uniform field
    Weizenmann, A.
    Godoy, M.
    de Arruda, A. S.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 645 - 647
  • [36] Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model
    Liu, Ting-Yu
    Zhao, Wei
    Wang, Tao
    An, Xiao-Dong
    Wei, Lai
    Huang, Yi-Neng
    CHINESE PHYSICS B, 2024, 33 (03)
  • [37] Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model
    刘婷玉
    赵薇
    王涛
    安小冬
    卫来
    黄以能
    Chinese Physics B, 2024, 33 (03) : 614 - 619
  • [38] MONTE-CARLO SIMULATION FOR RANDOM MIXTURES OF A 3-DIMENSIONAL ISING SITE MODEL .2.
    TATSUMI, T
    PROGRESS OF THEORETICAL PHYSICS, 1978, 59 (05): : 1437 - 1446
  • [39] COMPARISON BETWEEN CLUSTER MONTE-CARLO ALGORITHMS IN THE ISING-MODEL
    WOLFF, U
    PHYSICS LETTERS B, 1989, 228 (03) : 379 - 382
  • [40] MONTE-CARLO STUDY OF THE ISING-MODEL WITH RANDOM EXCHANGE BONDS
    PETRAKOVSKII, GA
    KUZMIN, EV
    APLESNIN, SS
    FIZIKA TVERDOGO TELA, 1981, 23 (10): : 3147 - 3152