Criticality of the random-site Ising model: Metropolis, Swendsen-Wang and Wolff Monte Carlo algorithms

被引:15
|
作者
Ivaneyko, D [1 ]
Ilnytskyi, J
Berche, B
Holovatch, Y
机构
[1] Ivan Franko Natl Univ Lviv, UA-79005 Lvov, Ukraine
[2] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine
[3] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[4] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
关键词
Ising model; quenched disorder; Monte Carlo; cluster algorithms; criticality;
D O I
10.5488/CMP.8.1.149
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We apply numerical simulations to study of the criticality of the 3D Ising model with random site quenched dilution. The emphasis is given to the issues not being discussed in detail before. In particular, we attempt a comparison of different Monte Carlo techniques, discussing regions of their applicability and advantages/disadvantages depending on the aim of a particular simulation set. Moreover, besides evaluation of the critical indices we estimate the universal ratio Gamma(+)/Gamma(-) for the magnetic susceptibility critical amplitudes. Our estimate Gamma(+)/Gamma(-) = 1.67 +/- 0.15 is in a good agreement with the recent MC analysis of the random-bond Ising model giving further support that both random-site and random-bond dilutions lead to the same universality class.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [21] Convergence of Stochastic Approximation Monte Carlo and modified Wang-Landau algorithms: Tests for the Ising model
    Schneider, Simon
    Mueller, Marco
    Janke, Wolfhard
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 216 : 1 - 7
  • [22] THE 2-DIMENSIONAL RANDOM BOND ISING-MODEL AT CRITICALITY - A MONTE-CARLO STUDY
    WANG, JS
    SELKE, W
    DOTSENKO, VS
    ANDREICHENKO, VB
    EUROPHYSICS LETTERS, 1990, 11 (04): : 301 - 305
  • [23] Thermodynamic properties of antiferromagnetic ternary systems using a random-site Ising model
    Osorio, A
    Contreras, WRA
    Zamora, LE
    Alcazar, GAP
    Plascak, JA
    PHYSICAL REVIEW B, 2003, 68 (02)
  • [24] CLUSTER MONTE-CARLO ALGORITHMS FOR RANDOM ISING-MODELS
    DOTSENKO, VS
    SELKE, W
    TALAPOV, AL
    PHYSICA A, 1991, 170 (02): : 278 - 281
  • [25] Swendsen-Wang Multi-Cluster Algorithm for the 2D/3D Ising Model on Xeon Phi and GPU
    Wende, Florian
    Steinke, Thomas
    2013 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2013,
  • [26] ON THE SWENDSEN-WANG DYNAMICS .2. CRITICAL DROPLETS AND HOMOGENEOUS NUCLEATION AT LOW-TEMPERATURE FOR THE 2-DIMENSIONAL ISING-MODEL
    MARTINELLI, F
    OLIVIERI, E
    SCOPPOLA, E
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (1-2) : 135 - 159
  • [27] CRITICAL PROPERTIES OF RANDOM-SITE PERCOLATION IN 2 AND 3 DIMENSIONS - A MONTE-CARLO STUDY
    CORSTEN, M
    JAN, N
    JERRARD, R
    PHYSICA A, 1989, 156 (03): : 781 - 794
  • [28] Critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model
    Shchur, LN
    Vasilyev, OA
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 016107
  • [29] Monte carlo study of the random-field Ising model
    Newman, MEJ
    Barkema, GT
    PHYSICAL REVIEW E, 1996, 53 (01): : 393 - 404
  • [30] Monte Carlo simulations of the random-field Ising model
    Barber, WC
    Belanger, DP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 : 545 - 547