Criticality of the random-site Ising model: Metropolis, Swendsen-Wang and Wolff Monte Carlo algorithms

被引:15
|
作者
Ivaneyko, D [1 ]
Ilnytskyi, J
Berche, B
Holovatch, Y
机构
[1] Ivan Franko Natl Univ Lviv, UA-79005 Lvov, Ukraine
[2] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine
[3] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[4] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
关键词
Ising model; quenched disorder; Monte Carlo; cluster algorithms; criticality;
D O I
10.5488/CMP.8.1.149
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We apply numerical simulations to study of the criticality of the 3D Ising model with random site quenched dilution. The emphasis is given to the issues not being discussed in detail before. In particular, we attempt a comparison of different Monte Carlo techniques, discussing regions of their applicability and advantages/disadvantages depending on the aim of a particular simulation set. Moreover, besides evaluation of the critical indices we estimate the universal ratio Gamma(+)/Gamma(-) for the magnetic susceptibility critical amplitudes. Our estimate Gamma(+)/Gamma(-) = 1.67 +/- 0.15 is in a good agreement with the recent MC analysis of the random-bond Ising model giving further support that both random-site and random-bond dilutions lead to the same universality class.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条