Gross Error Processing in State Estimation: Comparing the Residual and the Error Tests

被引:0
|
作者
Carvalho, Breno E. B. [1 ]
Bretas, Newton G. [1 ]
机构
[1] Univ Sao Paulo, Dept Elect & Comp Engn, Engn Sch Sao Carlos EESC, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gross Errors Processing; Innovation Index; Largest Normalized Residual Test; Power Systems State Estimation; SYSTEM; MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although being the most used method for detection and identification of gross errors in measurements in the state estimation process, the largest normalized residual test fails in determined situations. Aware of this fact, the authors of this paper aim to clarify the reasons for these failures and to present an alternative method for processing gross errors, based on the geometrical interpretation of the errors and the innovation index of the measurements. It will be shown in the simulations that the largest normalized residual test often fails if the gross error is present in a measurement with low innovation index, however this drawback does not occur when using the geometrical methodology. Both methods are applied in the gross error processing in different error scenarios, single and multiple, in order to make a comparison between their performances. The simulations were performed in the IEEE 14-bus test system.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Anomaly zone determination for topology error processing in power system state estimation
    Coelho T.C.
    Lourenço E.M.
    Simões Costa A.
    Journal of Control, Automation and Electrical Systems, 2013, 24 (03) : 312 - 323
  • [32] ESTIMATION OF RESIDUAL ERROR PARAMETERS FOR VECTOR NETWORK ANALYZERS
    Wuebbeler, Gerd
    Judaschke, Rolf
    Elster, Clemens
    XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 950 - 952
  • [33] Assessment of regional estimation error by canonical residual kriging
    Nezhad, M. Kamali
    Ouarda, T. B. M. J.
    Chokmani, K.
    Barbet, M.
    Bruneau, P.
    Adlouni, S. El
    HYDROLOGICAL PROCESSES, 2011, 25 (09) : 1418 - 1430
  • [34] Estimation of computational homogenization error by explicit residual method
    Oleksy, M.
    Cecot, W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) : 2504 - 2516
  • [35] Effects of residual variances on the estimation of the variance of the Fundamental Error
    Pitard, FF
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 74 (01) : 149 - 164
  • [36] Transport error estimation using residual Monte Carlo
    Vermaak, Jan I. C.
    Morel, Jim E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 464
  • [37] An advanced residual error model for tropospheric delay estimation
    Szabolcs Rózsa
    Bence Ambrus
    Ildikó Juni
    Pieter Bastiaan Ober
    Máté Mile
    GPS Solutions, 2020, 24
  • [38] An advanced residual error model for tropospheric delay estimation
    Rozsa, Szabolcs
    Ambrus, Bence
    Juni, Ildiko
    Ober, Pieter Bastiaan
    Mile, Mate
    GPS SOLUTIONS, 2020, 24 (04)
  • [39] Transient Adaptive Algorithm Based on Residual Error Estimation
    Ganesh, N.
    Balakrishnan, N.
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 577 - +
  • [40] Recovering of Masked Errors in Power Systems State Estimation and Measurement Gross Error Detection and Identification Proposition
    Bretas, N. G.
    London Jr, J. B. A.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,