Estimation of computational homogenization error by explicit residual method

被引:9
|
作者
Oleksy, M. [1 ]
Cecot, W. [1 ]
机构
[1] Cracow Univ Technol, Inst Computat Civil Engn, PL-31155 Krakow, Poland
关键词
Homogenization; Modeling error estimation; RVE analysis; hp-adaptive FEM; FINITE-ELEMENT-METHOD; LOCAL MODELING ERROR; HETEROGENEOUS MATERIALS; MECHANICS; STRATEGY; BODIES;
D O I
10.1016/j.camwa.2013.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a new method is introduced for the estimation of modeling error resulting from homogenization of elastic heterogeneous bodies. The approach is similar to the well known explicit residual approximation error estimation. It is proved that besides the residuum of the equilibrium equation and interelement traction jump also a difference of stress divergences as well as traction jump along the material interfaces contribute to the modeling error estimate. Moreover, explicit specification and numerical evaluation of "stability" constants provide reasonable effectivity index of this error indicator. Selected numerical examples illustrate the promise of this approach. Therefore, the proposed methodology is a computationally inexpensive option for the other methods of modeling error assessment. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2504 / 2516
页数:13
相关论文
共 50 条
  • [1] A posteriori error estimation for numerical model reduction in computational homogenization of porous media
    Ekre, Fredrik
    Larsson, Fredrik
    Runesson, Kenneth
    Janicke, Ralf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5350 - 5380
  • [2] Computational error estimation for the Material Point Method
    Martin Berzins
    Computational Particle Mechanics, 2023, 10 : 865 - 886
  • [3] Computational error estimation for the Material Point Method
    Berzins, Martin
    COMPUTATIONAL PARTICLE MECHANICS, 2023, 10 (04) : 865 - 886
  • [4] Numerical Model Reduction with error estimation for computational homogenization of non-linear consolidation
    Ekre, Fredrik
    Larsson, Fredrik
    Runesson, Kenneth
    Jaenicke, Ralf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [5] Residual a Posteriori Error Estimation for Frictional Contact with Nitsche Method
    Araya, Rodolfo
    Chouly, Franz
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [6] Residual a Posteriori Error Estimation for Frictional Contact with Nitsche Method
    Rodolfo Araya
    Franz Chouly
    Journal of Scientific Computing, 2023, 96
  • [7] Dual weighted residual error estimation for the finite cell method
    Di Stolfo, Paolo
    Rademacher, Andreas
    Schroeder, Andreas
    JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (02) : 101 - 122
  • [8] On Weak Residual Error Estimation
    SIAM J Sci Comput, 5 (1249):
  • [9] On weak residual error estimation
    Liu, JL
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05): : 1249 - 1268
  • [10] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599