Estimation of computational homogenization error by explicit residual method

被引:9
|
作者
Oleksy, M. [1 ]
Cecot, W. [1 ]
机构
[1] Cracow Univ Technol, Inst Computat Civil Engn, PL-31155 Krakow, Poland
关键词
Homogenization; Modeling error estimation; RVE analysis; hp-adaptive FEM; FINITE-ELEMENT-METHOD; LOCAL MODELING ERROR; HETEROGENEOUS MATERIALS; MECHANICS; STRATEGY; BODIES;
D O I
10.1016/j.camwa.2013.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a new method is introduced for the estimation of modeling error resulting from homogenization of elastic heterogeneous bodies. The approach is similar to the well known explicit residual approximation error estimation. It is proved that besides the residuum of the equilibrium equation and interelement traction jump also a difference of stress divergences as well as traction jump along the material interfaces contribute to the modeling error estimate. Moreover, explicit specification and numerical evaluation of "stability" constants provide reasonable effectivity index of this error indicator. Selected numerical examples illustrate the promise of this approach. Therefore, the proposed methodology is a computationally inexpensive option for the other methods of modeling error assessment. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2504 / 2516
页数:13
相关论文
共 50 条
  • [21] Homogenization method and its application in computational materials
    Liu, ST
    Lian, ZQ
    Gu, YX
    MECHANICS AND MATERIAL ENGINEERING FOR SCIENCE AND EXPERIMENTS, 2001, : 328 - 333
  • [22] Validation and error estimation of computational models
    Rebba, Ramesh
    Mahadevan, Sankaran
    Huang, Shuping
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (10-11) : 1390 - 1397
  • [23] Tolerance for error and computational estimation ability
    Hogan, TP
    Wyckoff, LA
    Krebs, P
    Jones, W
    Fitzgerald, MP
    PSYCHOLOGICAL REPORTS, 2004, 94 (03) : 1393 - 1403
  • [24] Estimation of modeling error in computational mechanics
    Oden, JT
    Prudhomme, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 182 (02) : 496 - 515
  • [25] A multiscale computational method with time and space homogenization
    Ladeveze, P
    Nouy, A
    COMPTES RENDUS MECANIQUE, 2002, 330 (10): : 683 - 689
  • [26] EXPLICIT AND EFFICIENT ERROR ESTIMATION FOR CONVEX MINIMIZATION PROBLEMS
    Bartels, Soren
    Kaltenbach, Alex
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2247 - 2279
  • [27] Global error estimation for explicit general linear methods
    Abdi, Ali
    Hojjati, Gholamreza
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1075 - 1093
  • [28] Quantum computing with error mitigation for data-driven computational homogenization
    Kuang, Zengtao
    Xu, Yongchun
    Huang, Qun
    El Kihal, Chafik
    El Kihal, Chafik
    Hu, Heng
    COMPOSITE STRUCTURES, 2025, 351
  • [29] Global error estimation for explicit general linear methods
    Ali Abdi
    Gholamreza Hojjati
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2022, 89 : 1075 - 1093
  • [30] Laguerre matrix method with the residual error estimation for solutions of a class of delay differential equations
    Yuzbasi, Suayip
    Gok, Emrah
    Sezer, Mehmet
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (04) : 453 - 463