Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS2

被引:12
|
作者
Xu, Ke [1 ,2 ]
Liang, Ting [3 ]
Zhang, Zhisen [1 ,2 ]
Cao, Xuezheng [1 ,2 ]
Han, Meng [3 ]
Wei, Ning [4 ]
Wu, Jianyang [1 ,2 ,5 ]
机构
[1] Xiamen Univ, Res Inst Biomimet & Soft Matter, Jiujiang Res Inst, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Elect Mat, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[4] Jiangnan Univ, Jiangsu Key Lab Adv Food Mfg Equipment & Technol, Wuxi 214122, Jiangsu, Peoples R China
[5] Norwegian Univ Sci & Technol NTNU, NTNU Nanomech Lab, N-7491 Trondheim, Norway
基金
中国国家自然科学基金;
关键词
MECHANICAL-PROPERTIES; MONOLAYER; CONDUCTIVITY; PHOTOLUMINESCENCE; DEFECTS;
D O I
10.1039/d1nr05113j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Grain boundaries (GBs) are inevitable defects in large-area MoS2 samples but they play a key role in their properties, however, the influence of grain misorientation on thermal transport has largely remained unknown. Here, the critical role of misorientation angle in thermal transport characteristics across 5|7 polar dislocation-dominated GBs in monolayer MoS2 is explored using nonequilibrium molecular dynamics simulations. Results show that thermal transport characteristics of defective GBs are greatly dictated by the misorientation angle, with "U"-shaped thermal conductance as misorientation angle varying from around 5.06-52.26 degrees, as well as by GB energy, 5|7 dislocation type and the grain size. Such unique thermal transport across GBs is primarily attributed to rising phonon-boundary softening and scattering with increasing dislocation density at GBs or GB energy, as well as an increase in localized phonon modes. The study establishes the fundamental relationship between GB and the thermal properties of single-layer MoS2 and highlights the vital role of GBs in designing efficient thermoelectric and thermal management transition metal dichalcogenides.
引用
收藏
页码:1241 / 1249
页数:9
相关论文
共 50 条
  • [1] Orientation Dependent Thermal Conductance in Single-Layer MoS2
    Jiang, Jin-Wu
    Zhuang, Xiaoying
    Rabczuk, Timon
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [2] Orientation Dependent Thermal Conductance in Single-Layer MoS2
    Jin-Wu Jiang
    Xiaoying Zhuang
    Timon Rabczuk
    [J]. Scientific Reports, 3
  • [3] Thermal Transport in Single-Layer MoS2 and Black Phosphorus Transistors
    Liu, Leitao
    Guo, Jing
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (03) : 1189 - 1194
  • [4] SINGLE-LAYER MOS2
    JOENSEN, P
    FRINDT, RF
    MORRISON, SR
    [J]. MATERIALS RESEARCH BULLETIN, 1986, 21 (04) : 457 - 461
  • [5] Twist Angle-Dependent Interface Thermal Conductance in MoS2 Bilayers
    Li, Liqiang
    Lin, Kejun
    Zhang, Liang
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (06) : 2949 - 2955
  • [6] Bandgap broadening at grain boundaries in single-layer MoS2
    Dongfei Wang
    Hua Yu
    Lei Tao
    Wende Xiao
    Peng Fan
    Tingting Zhang
    Mengzhou Liao
    Wei Guo
    Dongxia Shi
    Shixuan Du
    Guangyu Zhang
    Hongjun Gao
    [J]. Nano Research, 2018, 11 : 6102 - 6109
  • [7] Bandgap broadening at grain boundaries in single-layer MoS2
    Wang, Dongfei
    Yu, Hua
    Tao, Lei
    Xiao, Wende
    Fan, Peng
    Zhang, Tingting
    Liao, Mengzhou
    Guo, Wei
    Shi, Dongxia
    Du, Shixuan
    Zhang, Guangyu
    Gao, Hongjun
    [J]. NANO RESEARCH, 2018, 11 (11) : 6102 - 6109
  • [8] Twist Angle-Dependent Interface Thermal Conductance in MoS2 Bilayers
    Liqiang Li
    Kejun Lin
    Liang Zhang
    [J]. Journal of Electronic Materials, 2022, 51 : 2949 - 2955
  • [9] Towards intrinsic phonon transport in single-layer MoS2
    Peng, Bo
    Zhang, Hao
    Shao, Hezhu
    Xu, Yuanfeng
    Zhang, Xiangchao
    Zhu, Heyuan
    [J]. ANNALEN DER PHYSIK, 2016, 528 (06) : 504 - 511
  • [10] Ballistic transport in single-layer MoS2 piezotronic transistors
    Xin Huang
    Wei Liu
    Aihua Zhang
    Yan Zhang
    Zhonglin Wang
    [J]. Nano Research, 2016, 9 : 282 - 290