Data-driven selection of the spline dimension in penalized spline regression

被引:15
|
作者
Kauermann, Goeran [1 ]
Opsomer, Jean D. [2 ]
机构
[1] Univ Bielefeld, Dept Econ & Business Adm, D-33501 Bielefeld, Germany
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
关键词
Knot selection; Maximum likelihood; Mixed model; Nonparametric regression;
D O I
10.1093/biomet/asq081
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A number of criteria exist to select the penalty in penalized spline regression, but the selection of the number of spline basis functions has received much less attention in the literature. We propose a likelihood-based criterion to select the number of basis functions in penalized spline regression. The criterion is easy to apply and we describe its theoretical and practical properties.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [41] SPLINE REGRESSION
    LENTH, RV
    [J]. AMERICAN STATISTICIAN, 1977, 31 (01): : 53 - 54
  • [42] DATA DRIVEN ADAPTIVE SPLINE SMOOTHING
    Liu, Ziyue
    Guo, Wensheng
    [J]. STATISTICA SINICA, 2010, 20 (03) : 1143 - 1163
  • [43] A penalized spline estimator for fixed effects panel data models
    Peter Pütz
    Thomas Kneib
    [J]. AStA Advances in Statistical Analysis, 2018, 102 : 145 - 166
  • [44] Penalized spline estimation in varying coefficient models with censored data
    Hendrickx, K.
    Janssen, P.
    Verhasselt, A.
    [J]. TEST, 2018, 27 (04) : 871 - 895
  • [45] Using Penalized Spline Regression to calculate Mean Trajectories including Confidence Intervals of Human Motion Data
    Carton, Daniel
    Turnwald, Annemarie
    Olszowy, Wiktor
    Buss, Martin
    Wollherr, Dirk
    [J]. 2014 IEEE WORKSHOP ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS (ARSO), 2014, : 76 - 81
  • [46] A penalized spline estimator for fixed effects panel data models
    Puetz, Peter
    Kneib, Thomas
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (02) : 145 - 166
  • [47] A DATA-DRIVEN SPLINE MODEL DESIGNED TO PREDICT PALEOCLIMATE USING PALEOSOL GEOCHEMISTRY
    Stinchcomb, Gary E.
    Nordt, Lee C.
    Driese, Steven G.
    Lukens, William E.
    Williamson, Forrest C.
    Tubbs, Jack D.
    [J]. AMERICAN JOURNAL OF SCIENCE, 2016, 316 (08) : 746 - 777
  • [48] Data-driven quasi-interpolant spline surfaces for point cloud approximation
    Raffo, Andrea
    Biasotti, Silvia
    [J]. COMPUTERS & GRAPHICS-UK, 2020, 89 : 144 - 155
  • [49] Penalized spline estimation in varying coefficient models with censored data
    K. Hendrickx
    P. Janssen
    A. Verhasselt
    [J]. TEST, 2018, 27 : 871 - 895
  • [50] Model selection for penalized spline smoothing using akaike information criteria
    Wager, Carrie
    Vaida, Florin
    Kauermann, Goeran
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (02) : 173 - 190