SPLINE REGRESSION

被引:0
|
作者
LENTH, RV [1 ]
机构
[1] UNIV IOWA,DEPT STAT,IOWA CITY,IA 52242
来源
AMERICAN STATISTICIAN | 1977年 / 31卷 / 01期
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:53 / 54
页数:2
相关论文
共 50 条
  • [1] Multiresponse spline regression
    Soo, YW
    Bates, DM
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 22 (06) : 619 - 631
  • [2] Kernel spline regression
    Braun, WJ
    Huang, LS
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 259 - 278
  • [3] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [4] Spline regression in clinical research
    Mulla, Z. D.
    [J]. WEST INDIAN MEDICAL JOURNAL, 2007, 56 (01): : 77 - 79
  • [5] Isotonic smoothing spline regression
    Wang, Xiao
    Li, Feng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (01) : 21 - 37
  • [6] On derivative estimation in spline regression
    Zhou, SG
    Wolfe, DA
    [J]. STATISTICA SINICA, 2000, 10 (01) : 93 - 108
  • [7] Spatial spline regression models
    Sangalli, Laura M.
    Ramsay, James O.
    Ramsay, Timothy O.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (04) : 681 - 703
  • [8] Theory for penalised spline regression
    Hall, P
    Opsomer, JD
    [J]. BIOMETRIKA, 2005, 92 (01) : 105 - 118
  • [9] Modal Interval Regression Based on Spline Quantile Regression
    Yao, Sai
    Kitahara, Daichi
    Kuroda, Hiroki
    Hirabayshi, Akira
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (02) : 106 - 123
  • [10] Modal Interval Regression Based on Spline Quantile Regression
    Yao, Sai
    Kitahara, Daichi
    Kuroda, Hiroki
    Hirabayashi, Akira
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)