Maximum likelihood estimation for Gaussian processes under inequality constraints

被引:11
|
作者
Bachoc, Francois [1 ]
Lagnoux, Agnes [2 ]
Lopez-Lopera, Andres F. [3 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, Toulouse, France
[2] Univ Toulouse Jean Jaures, Inst Math Toulouse, Toulouse, France
[3] Univ Clermont Auvergne, CNRS, Inst Henri Fayol, LIMOS,Mines St Etienne,UMR 6158, F-42023 St Etienne, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 02期
关键词
Gaussian processes; inequality constraints; fixed-domain asymptotics; constrained maximum likelihood; asymptotic normality; STOCHASTIC-PROCESS MODEL; RANDOM-FIELD; ASYMPTOTIC PROPERTIES; DOMAIN ASYMPTOTICS; LINEAR PREDICTIONS; CROSS-VALIDATION; COMPUTER-MODELS; PARAMETERS; CALIBRATION;
D O I
10.1214/19-EJS1587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider covariance parameter estimation for a Gaussian process under inequality constraints (boundedness, monotonicity or convexity) in fixed-domain asymptotics. We address the estimation of the variance parameter and the estimation of the microergodic parameter of the Matern and Wendland covariance functions. First, we show that the (unconstrained) maximum likelihood estimator has the same asymptotic distribution, unconditionally and conditionally to the fact that the Gaussian process satisfies the inequality constraints. Then, we study the recently suggested constrained maximum likelihood estimator. We show that it has the same asymptotic distribution as the (unconstrained) maximum likelihood estimator. In addition, we show in simulations that the constrained maximum likelihood estimator is generally more accurate on finite samples. Finally, we provide extensions to prediction and to noisy observations.
引用
收藏
页码:2921 / 2969
页数:49
相关论文
共 50 条
  • [11] ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
    Lieberman, Offer
    Rosemarin, Roy
    Rousseau, Judith
    [J]. ECONOMETRIC THEORY, 2012, 28 (02) : 457 - 470
  • [12] Fast, Approximate Maximum Likelihood Estimation of Log-Gaussian Cox Processes
    Dovers, Elliot
    Brooks, Wesley
    Popovic, Gordana C. C.
    Warton, David I. I.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1660 - 1670
  • [13] Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes
    Dahlhaus, Rainer
    Polonik, Wolfgang
    [J]. ANNALS OF STATISTICS, 2006, 34 (06): : 2790 - 2824
  • [14] Maximum Likelihood Estimation Under Constraints: Singularities and Random Critical Points
    Ghosh, Subhroshekhar
    Chaudhuri, Sanjay
    Gangopadhyay, Ujan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (12) : 7976 - 7997
  • [15] Sequential Construction and Dimension Reduction of Gaussian Processes Under Inequality Constraints
    Bachoc, Francois
    Lopez-Lopera, Andres F.
    Roustant, Olivier
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (02): : 772 - 800
  • [16] Gaussian Process Modulated Cox Processes under Linear Inequality Constraints
    Lopez-Lopera, Andres F.
    John, S. T.
    Durrande, Nicolas
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [17] INEQUALITY CONSTRAINED MAXIMUM-LIKELIHOOD ESTIMATION
    HANSON, MA
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1965, 17 (03) : 311 - 321
  • [18] MAXIMUM LIKELIHOOD ESTIMATION FOR MARKOV PROCESSES
    RAO, BLSP
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1972, 24 (02) : 333 - 345
  • [19] Maximum likelihood estimation for Wishart processes
    Alfonsi, Aurelien
    Kebaier, Ahmed
    Rey, Clement
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (11) : 3243 - 3282
  • [20] Maximum likelihood estimation for a bivariate Gaussian process under fixed domain asymptotics
    Velandia, Daira
    Bachoc, Francois
    Bevilacqua, Moreno
    Gendre, Xavier
    Loubes, Jean-Michel
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 2978 - 3007