Maximum likelihood estimation for Gaussian processes under inequality constraints

被引:11
|
作者
Bachoc, Francois [1 ]
Lagnoux, Agnes [2 ]
Lopez-Lopera, Andres F. [3 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, Toulouse, France
[2] Univ Toulouse Jean Jaures, Inst Math Toulouse, Toulouse, France
[3] Univ Clermont Auvergne, CNRS, Inst Henri Fayol, LIMOS,Mines St Etienne,UMR 6158, F-42023 St Etienne, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 02期
关键词
Gaussian processes; inequality constraints; fixed-domain asymptotics; constrained maximum likelihood; asymptotic normality; STOCHASTIC-PROCESS MODEL; RANDOM-FIELD; ASYMPTOTIC PROPERTIES; DOMAIN ASYMPTOTICS; LINEAR PREDICTIONS; CROSS-VALIDATION; COMPUTER-MODELS; PARAMETERS; CALIBRATION;
D O I
10.1214/19-EJS1587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider covariance parameter estimation for a Gaussian process under inequality constraints (boundedness, monotonicity or convexity) in fixed-domain asymptotics. We address the estimation of the variance parameter and the estimation of the microergodic parameter of the Matern and Wendland covariance functions. First, we show that the (unconstrained) maximum likelihood estimator has the same asymptotic distribution, unconditionally and conditionally to the fact that the Gaussian process satisfies the inequality constraints. Then, we study the recently suggested constrained maximum likelihood estimator. We show that it has the same asymptotic distribution as the (unconstrained) maximum likelihood estimator. In addition, we show in simulations that the constrained maximum likelihood estimator is generally more accurate on finite samples. Finally, we provide extensions to prediction and to noisy observations.
引用
收藏
页码:2921 / 2969
页数:49
相关论文
共 50 条