Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice

被引:35
|
作者
Stroud, Jonathan R. [1 ]
Stein, Michael L. [2 ]
Lysen, Shaun [3 ]
机构
[1] Georgetown Univ, McDonough Sch Business, Washington, DC 20057 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[3] Google Inc, Quantitat Mkt, Boulder, CO USA
关键词
Circulant embedding; Data augmentation; EM algorithm; Markov chain Monte Carlo; Spatial statistics; EXACT SIMULATION; STATIONARY PROCESS; APPROXIMATION; MODEL;
D O I
10.1080/10618600.2016.1152970
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a new approach for Bayesian and maximum likelihood parameter estimation for stationary Gaussian processes observed on a large lattice with missing values. We propose a Markov chain Monte Carlo approach for Bayesian inference, and a Monte Carlo expectation-maximization algorithm for maximum likelihood inference. Our approach uses data augmentation and circulant embedding of the covariance matrix, and provides likelihood-based inference for the parameters and the missing data. Using simulated data and an application to satellite sea surface temperatures in the Pacific Ocean, we show that our method provides accurate inference on lattices of sizes up to 512 x 512, and is competitive with two popular methods: composite likelihood and spectral approximations.
引用
收藏
页码:108 / 120
页数:13
相关论文
共 50 条