Analytic continuation of the multiple Lucas zeta functions

被引:6
|
作者
Meher, Nabin Kumar [1 ]
Rout, Sudhansu Sekhar [2 ]
机构
[1] Harish Chandra Res Inst HBNI, Chhatnag Rd, Jhunsi 211019, India
[2] Inst Math & Applicat, Bhubaneswar 751029, India
关键词
Analytic continuation; Multiple Lucas zeta function; Lucas sequence; Residues and poles; FIBONACCI NUMBERS; RECIPROCAL SUMS;
D O I
10.1016/j.jmaa.2018.08.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a continuation of our previous paper [7], in which multiple Fibonacci zeta functions of depth 2 have been studied. In this article, we consider more general situation. In particular, we prove the meromorphic continuation of the multiple Lucas zeta functions of depth d: Sigma(0 < n1 < ... < nd) 1/U-n1(s1) ... U-nd(sd), where U-n, is the n-th Lucas number of first kind and Sigma(d)(i=j) Re(s(i)) > 0 for 1 <= j <= d. We compute a complete list of poles and their residues. We also prove that the multiple Lucas zeta values at negative integer arguments are rational. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1115 / 1130
页数:16
相关论文
共 50 条
  • [31] ANALYTIC CONTINUATION OF THE RESOLVENT OF THE LAPLACIAN AND THE DYNAMICAL ZETA FUNCTION
    Petkov, Vesselin
    Stoyanov, Luchezar
    [J]. ANALYSIS & PDE, 2010, 3 (04): : 427 - 489
  • [32] Analytic Continuation of Euler Polynomials and the Euler Zeta Function
    Ryoo, C. S.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [33] ANALYTIC PROPERTIES OF THE APOSTOL-VU MULTIPLE LUCAS L-FUNCTIONS
    Dutta, Utkal Keshari
    Ray, Prasanta Kumar
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (4A): : 895 - 909
  • [34] Analytic continuation of multiple polylogarithmsАналитическое продолжение кратных полилогарифмов
    Jianqiang Zhao
    [J]. Analysis Mathematica, 2007, 33 (4) : 301 - 323
  • [35] Complete anti-analytic continuation of analytic functions
    Kuehnau, Reiner
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2010, 17 (02) : 305 - 345
  • [36] On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions
    Nakasuji, Maki
    Phuksuwan, Ouamporn
    Yamasaki, Yoshinori
    [J]. ADVANCES IN MATHEMATICS, 2018, 333 : 570 - 619
  • [37] ON THE ANALYTIC CONTINUATION OF C-FUNCTIONS
    RINGSETH, PF
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (03): : 513 - 531
  • [38] ANALYTIC CONTINUATION OF GENERALIZED-FUNCTIONS
    COLOMBEAU, JF
    GALE, JE
    [J]. ACTA MATHEMATICA HUNGARICA, 1988, 52 (1-2) : 57 - 60
  • [39] STABLE ANALYTIC CONTINUATION WITH RATIONAL FUNCTIONS
    STEFANESCU, IS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) : 175 - 188
  • [40] Analytic Continuation of Multipoint Correlation Functions
    Ge, Anxiang
    Halbinger, Johannes
    Lee, Seung-Sup B.
    von Delft, Jan
    Kugler, Fabian B.
    [J]. ANNALEN DER PHYSIK, 2024, 536 (07)