ANALYTIC CONTINUATION OF THE RESOLVENT OF THE LAPLACIAN AND THE DYNAMICAL ZETA FUNCTION

被引:24
|
作者
Petkov, Vesselin [1 ]
Stoyanov, Luchezar [2 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
[2] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia
来源
ANALYSIS & PDE | 2010年 / 3卷 / 04期
关键词
open billiard; periodic rays; zeta function; QUANTUM RESONANCES; DECAY; REGULARITY; POLES;
D O I
10.2140/apde.2010.3.427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let s(0) < 0 be the abscissa of absolute convergence of the dynamical zeta function Z(s) for several disjoint strictly convex compact obstacles K-i subset of R-N, i = 1; ... ; kappa(0), kappa(0) >= 3, and let R-x(z) = chi (-Delta(D) - z(2))(-1) chi, chi is an element of C-0(infinity) (R-N), be the cutoff resolvent of the Dirichlet Laplacian -Delta(D) in the closure of R-N\U-i=1(kappa 0) K-i. i D 1 Ki. We prove that there exists sigma(1) < s(0) such that the cutoff resolvent R chi (z) has an analytic continuation for Im z < -sigma(1) vertical bar Re z vertical bar >= J(1) > 0:
引用
收藏
页码:427 / 489
页数:63
相关论文
共 50 条