Ex-situ Training of Dense Memristor Crossbar for Neuromorphic Applications

被引:0
|
作者
Hasan, Raqibul [1 ]
Yakopcic, Chris [1 ]
Taha, Tarek M. [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
关键词
Memristor crossbars; deep neural networks; pattern recognition; low power system;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study proposes a technique for programming a dense memristor crossbar array without isolation transistors (0T1M) in order to achieve ex-situ training of a neural network. Programming memristors to a specific resistance level requires an iterative process needing the reading of individual memristor resistances due to memristor device stochasticity. This paper presents a circuit to read individual resistances from a 0T1M crossbar and a method to map neuron synaptic weights into a novel neural circuit to enable ex-situ training. The results show that we are able to train the resistances in a 0T1M crossbar and that the 0T1M system is about 93% smaller in area than 1T1M systems.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [41] Ex-situ bioremediation of chlorobenzenes in soil
    Guerin, Turlough F.
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2008, 154 (1-3) : 9 - 20
  • [42] Ferroelectric memristor and its neuromorphic computing applications
    Du, Junmei
    Sun, Bai
    Yang, Chuan
    Cao, Zelin
    Zhou, Guangdong
    Wang, Hongyan
    Chen, Yuanzheng
    [J]. Materials Today Physics, 2025, 50
  • [43] Polymer memristor for information storage and neuromorphic applications
    Chen, Yu
    Liu, Gang
    Wang, Cheng
    Zhang, Wenbin
    Li, Run-Wei
    Wang, Luxing
    [J]. MATERIALS HORIZONS, 2014, 1 (05) : 489 - 506
  • [44] Ex-situ treatment of dense nonaqueous phase liquids using calcium oxide (quick lime)
    Dean, WG
    [J]. CONTAMINATED SOILS, SEDIMENTS AND WATER: SCIENCE IN THE REAL WORLD, VOL 9, 2005, 9 : 469 - 475
  • [45] Memristor Crossbar Array Simulation for Deep Learning Applications
    Machado, Elvis Diaz
    Vicario, Jose Lopez
    Miranda, Enrique
    Morell, Antoni
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2024, 23 : 512 - 515
  • [46] Repetitive switching behaviour of a memristor for passive crossbar applications
    Yan, Z. B.
    Zhu, X. C.
    Liu, M.
    Jiang, X. M.
    Jiang, X. F.
    Liu, J-M
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (50)
  • [47] Neuromorphic Computing Using Memristor Crossbar Networks A focus on bio-inspired approaches
    Jeong, Yeonjoo
    Lu, Wei D.
    [J]. IEEE NANOTECHNOLOGY MAGAZINE, 2018, 12 (03) : 6 - 18
  • [48] Cascaded Architecture for Memristor Crossbar Array Based Larger-Scale Neuromorphic Computing
    Sun, Sheng-Yang
    Xu, Hui
    Li, Jiwei
    Li, Qingjiang
    Liu, Haijun
    [J]. IEEE ACCESS, 2019, 7 : 61679 - 61688
  • [49] Memristor Crossbar Based Low Cost Classifiers and Their Applications
    Hasan, Raqibul
    Taha, Tarek M.
    [J]. IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON 2014), 2014, : 75 - 80
  • [50] Hardware Implementation of Neuromorphic Computing Using Large-Scale Memristor Crossbar Arrays
    Li, Yesheng
    Ang, Kah-Wee
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)