The perimeter of optimal convex lattice polygons in the sense of different metrics

被引:2
|
作者
Stojakovic, M [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Inst Math, YU-21000 Novi Sad, Yugoslavia
关键词
D O I
10.1017/S0004972700019298
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classes of convex lattice polygons which have minimal l(p)-perimeter with respect to the number of their vertices are said to be optimal in the sense of the l(p)-metric. Tt is proved that if p and q are arbitrary integers or infinity, the asymptotic expression for the l(p)-perimeter of these optimal convex lattice polygons Q(p)(n) as a function of the number of their vertices n is per(q)(Q(p)(n)) = C(p)(q)pi/root 6A(p)(3) n(3/2) + O(n(1+epsilon)) for arbritary epsilon > 0, where C-p(q) = integral integral (/x/p+/y/p less than or equal to1) (q)root /x/(q) + /y/(q) dx dy, and A(p) is equal to the area of the planar shape \x\(p) + \y\(p) less than or equal to 1.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 50 条
  • [31] Large deviations in the geometry of convex lattice polygons
    Vershik, A
    Zeitouni, O
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1999, 109 (1) : 13 - 27
  • [32] Maximal perimeter, diameter and area of equilateral unit-width convex polygons
    Charles Audet
    Jordan Ninin
    [J]. Journal of Global Optimization, 2013, 56 : 1007 - 1016
  • [33] Perimeter generating functions for the mean-squared radius of gyration of convex polygons
    Jensen, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (46): : L769 - L775
  • [34] OPTIMAL ALGORITHMS FOR DETERMINING THE MOVABILITY OF CONVEX POLYGONS
    李辉
    [J]. Science China Mathematics, 1988, (05) : 611 - 620
  • [35] Optimal space coverage with white convex polygons
    Ehsani, Shayan
    Fazli, MohammadAmin
    Ghodsi, Mohammad
    Safari, MohammadAli
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (02) : 341 - 353
  • [36] Optimal space coverage with white convex polygons
    Shayan Ehsani
    MohammadAmin Fazli
    Mohammad Ghodsi
    MohammadAli Safari
    [J]. Journal of Combinatorial Optimization, 2016, 32 : 341 - 353
  • [37] AN OPTIMAL ILLUMINATION REGION ALGORITHM FOR CONVEX POLYGONS
    LEE, DT
    SILIO, CB
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1982, 31 (12) : 1225 - 1227
  • [38] AN OPTIMAL ALGORITHM FOR ROUNDNESS DETERMINATION ON CONVEX POLYGONS
    SWANSON, K
    LEE, DT
    WU, VL
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (04): : 225 - 235
  • [39] A CENSUS OF CONVEX LATTICE POLYGONS WITH AT MOST ONE INTERIOR LATTICE POINT
    RABINOWITZ, S
    [J]. ARS COMBINATORIA, 1989, 28 : 83 - 96
  • [40] Maximal perimeter, diameter and area of equilateral unit-width convex polygons
    Audet, Charles
    Ninin, Jordan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 1007 - 1016