Urban population density estimation based on spatio-temporal trajectories

被引:5
|
作者
Xue, Fei [1 ]
Cao, Yang [1 ,2 ]
Ding, Zhiming [2 ,3 ]
Tang, Hengliang [1 ]
Yang, Xi [1 ]
Chen, Lei [1 ]
Li, Juntao [1 ]
机构
[1] Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
[2] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
deep learning; LSTM-CNN; population density prediction; spatio-temporal trajectory; RECURRENT NEURAL-NETWORK; SEARCH ALGORITHM; PREDICTION; OPTIMIZATION;
D O I
10.1002/cpe.5685
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Regional population density has temporal and spatial characteristics, and most of the existing prediction models fail to take these two characteristics into account at the same time, which results in unsatisfactory forecasting results. To address this problem, we use the deep learning models to predict the crowd distribution in the evacuation area, so as to realize the recommendation of the evacuation area. First, a raster population density prediction model based on long short-term memory (LSTM) is studied, and then a multiarea population density prediction model considering temporal and spatial characteristics, named ST-LSTM, is designed. The results of our extensive experiments on the real dataset show that our proposed ST-LSTM is both effective and efficient.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Spatio-temporal mixture process estimation to detect dynamical changes in population
    Pruilh, Solange
    Jannot, Anne-Sophie
    Allassonniere, Stephanie
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 126
  • [42] Space-time density of trajectories: exploring spatio-temporal patterns in movement data
    Demsar, Urska
    Virrantaus, Kirsi
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2010, 24 (10) : 1527 - 1542
  • [43] Spatio-temporal approach for noise estimation
    Zlokolica, V.
    Pizurica, A.
    Vansteenkiste, E.
    Philips, W.
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1393 - 1396
  • [44] Urban crime prediction based on spatio-temporal Bayesian model
    Hu, Tao
    Zhu, Xinyan
    Duan, Lian
    Guo, Wei
    [J]. PLOS ONE, 2018, 13 (10):
  • [45] Spatio-temporal reasoning based spatio-temporal information management middleware
    Wang, SS
    Liu, DY
    Wang, Z
    [J]. ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 436 - 441
  • [46] SPATIO-TEMPORAL ESTIMATION OF WILDFIRE GROWTH
    Sharma, Balaji R.
    Kumar, Manish
    Cohen, Kelly
    [J]. ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [47] Spatio-temporal patterns in population dynamics
    La Barbera, A
    Spagnolo, B
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) : 120 - 124
  • [48] Noise estimation for video processing based on spatio-temporal gradients
    Zlokolica, Vladimir
    Pizurica, Aleksandra
    Philips, Wilfried
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) : 337 - 340
  • [49] Motion estimation based on spatio-temporal correlations and pixel decimation
    Sheinin, V
    [J]. IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2005, PTS 1 AND 2, 2005, 5685 : 713 - 717
  • [50] Road Condition Estimation Based on Spatio-Temporal Reflection Models
    Amthor, Manuel
    Hartmann, Bernd
    Denzler, Joachim
    [J]. PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 3 - 15