Minimal Path based Particle Tracking in Low SNR Fluorescence Microscopy Images

被引:3
|
作者
Lu, Sheng [1 ]
Chen, Tong [1 ]
Yang, Fan [1 ]
Peng, Chenglei [1 ]
Du, Sidan [1 ]
Li, Yang [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, 163 Xianlin Ave, Nanjing, Peoples R China
关键词
Single particle tracking; Low SNR; Minimal path theory;
D O I
10.1145/3354031.3354035
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Single Particle Tracking (SPT) in fluorescence microscopy image is of great importance in the field of computational biology. Automatic or slightly interactive tracking algorithms are essential for the motional analysis of micro particles. Even with prior knowledge, conventional methods may fail when the signal-to-noise ratio (SNR) is too low because they highly depend on the quality of the image and the results of detection. To reliably track particles in the low SNR images, we proposed a novel method based on minimal path theory and attempted to extract complete trajectories between two points. Our method was evaluated on several simulated image sequences and showed its accuracy and robustness in the task of particle tracking.
引用
收藏
页码:93 / 97
页数:5
相关论文
共 50 条
  • [31] Simultaneous Tracking of Multiple Particles and Sensor Position Estimation in Fluorescence Microscopy Images
    Franco, Jose
    Houssineau, Jeremie
    Clark, Daniel
    Rickman, Colin
    2013 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2013,
  • [32] Boundary Fitting Based Segmentation of Fluorescence Microscopy Images
    Lee, Soonam
    Salama, Paul
    Dunn, Kenneth W.
    Delp, Edward J.
    IMAGING AND MULTIMEDIA ANALYTICS IN A WEB AND MOBILE WORLD 2015, 2015, 9408
  • [33] Subcellular Localization Algorithm Based On Fluorescence Microscopy Images
    Li, Chao
    Wang, Xue-Hong
    Zheng, Li
    Huang, Ji-Feng
    PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, : 171 - 177
  • [34] Data fusion and smoothing for probabilistic tracking of viral structures in fluorescence microscopy images
    Ritter, C.
    Wollmann, T.
    Lee, J-Y
    Imle, A.
    Mueller, B.
    Fackler, O. T.
    Bartenschlager, R.
    Rohr, K.
    MEDICAL IMAGE ANALYSIS, 2021, 73
  • [35] TRACKING MULTIPLE PARTICLES IN FLUORESCENCE MICROSCOPY IMAGES VIA PROBABILISTIC DATA ASSOCIATION
    Godinez, W. J.
    Lampe, M.
    Eils, R.
    Mueller, B.
    Rohr, K.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1925 - 1928
  • [36] Sperm Flagellum Center-Line Tracing in Fluorescence 3D+t Low SNR Stacks Using an Iterative Minimal Path Method
    Hernandez-Herrera, Paul
    Montoya, Fernando
    Rendon, Juan M.
    Darszon, Alberto
    Corkidi, Gabriel
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 437 - 445
  • [37] A variational model for level-set based cell tracking in time-lapse fluorescence microscopy images
    Dzyubachyk, Oleh
    Niessen, Wiro
    Meijering, Erik
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 97 - 100
  • [38] A Novel Multiple Hypothesis Based Particle Tracking Method for Clathrin Mediated Endocytosis Analysis Using Fluorescence Microscopy
    Liang, Liang
    Shen, Hongying
    De Camilli, Pietro
    Duncan, James S.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1844 - 1857
  • [39] 3-D + t Human Sperm Flagellum Tracing in Low SNR Fluorescence Images
    Hernandez-Herrera, Paul
    Montoya, Fernando
    Manuel Rendon-Mancha, Juan
    Darszon, Alberto
    Corkidi, Gabriel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (10) : 2236 - 2247
  • [40] Automatic Single-Cell Segmentation and Tracking of Bacterial Cells in Fluorescence Microscopy Images
    Liluashvili, Vaja
    Bergeest, Jan-Philip
    Harder, Nathalie
    Ziesack, Marika
    Mutlu, Alper
    Bischofs, Ilka B.
    Rohr, Karl
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 239 - 244