Minimal Path based Particle Tracking in Low SNR Fluorescence Microscopy Images

被引:3
|
作者
Lu, Sheng [1 ]
Chen, Tong [1 ]
Yang, Fan [1 ]
Peng, Chenglei [1 ]
Du, Sidan [1 ]
Li, Yang [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, 163 Xianlin Ave, Nanjing, Peoples R China
关键词
Single particle tracking; Low SNR; Minimal path theory;
D O I
10.1145/3354031.3354035
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Single Particle Tracking (SPT) in fluorescence microscopy image is of great importance in the field of computational biology. Automatic or slightly interactive tracking algorithms are essential for the motional analysis of micro particles. Even with prior knowledge, conventional methods may fail when the signal-to-noise ratio (SNR) is too low because they highly depend on the quality of the image and the results of detection. To reliably track particles in the low SNR images, we proposed a novel method based on minimal path theory and attempted to extract complete trajectories between two points. Our method was evaluated on several simulated image sequences and showed its accuracy and robustness in the task of particle tracking.
引用
收藏
页码:93 / 97
页数:5
相关论文
共 50 条
  • [21] Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis
    Smal, Ihor
    Draegestein, Katharina
    Galjart, Niels
    Niessen, Wiro
    Meijering, Erik
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (06) : 789 - 804
  • [22] Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images
    Almasi, Sepideh
    Ben-Zvi, Ayal
    Lacoste, Baptiste
    Gu, Chenghua
    Miller, Eric L.
    Xu, Xiaoyin
    PATTERN RECOGNITION, 2017, 63 : 710 - 718
  • [23] Tracking Low SNR Targets Using Particle Filter with Flow Control
    Moshtagh, Nima
    Romberg, Paul M.
    Chan, Moses W.
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2014, 2014, 9092
  • [24] Video Object Tracking in Neural Axons with Fluorescence Microscopy Images
    Yuan, Liang
    Zhu, Junda
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [25] In vivo particle tracking using fluorescence microscopy and optical trapping
    Balci, Hamza
    Blehm, Benjamin H.
    Toprak, Erdal
    Serpinskaya, Anna S.
    Gelfand, Vladimir I.
    Selvin, Paul R.
    BIOPHYSICAL JOURNAL, 2007, : 527A - 527A
  • [26] DETECTION AND TRACKING OF THREATS IN AERIAL INFRARED IMAGES BY A MINIMAL PATH APPROACH
    Aubert, Gilles
    Baudour, Alexis
    Blanc-Feraud, Laure
    Guillot, Laurence
    Le Guilloux, Yann
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1658 - 1661
  • [27] Probing the Intracellular Reaction Dynamics of Low Density Lipoprotein Using Single Particle Tracking Fluorescence Microscopy
    Humphries, William H.
    Payne, Christine K.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 33A - 34A
  • [28] A new PDE-based resolution enhancement technique for the analysis of low SNR particle displacement images
    Mohseni, Arman
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 85 : 289 - 311
  • [29] PARTICLE TRACKING IN FLUORESCENT MICROSCOPY IMAGES IMPROVED BY MORPHOLOGICAL SOURCE SEPARATION
    Chenouard, Nicolas
    Bloch, Isabelle
    Olivo-Marin, Jean-Christophe
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 821 - +
  • [30] DETNET: DEEP NEURAL NETWORK FOR PARTICLE DETECTION IN FLUORESCENCE MICROSCOPY IMAGES
    Wollmann, T.
    Ritter, C.
    Dohrke, J. N.
    Lee, J-Y
    Bartenschlager, R.
    Rohr, K.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 517 - 520