Region Growing Segmentation with Iterative K-means For CT Liver Images

被引:6
|
作者
Mostafa, Abdalla [1 ,6 ]
Abd Elfattah, Mohamed [2 ,6 ]
Fouad, Ahmed [3 ,6 ]
Hassanien, Aboul Ella [4 ,6 ]
Hefny, Hesham [1 ]
Kim, Tai-hoon [5 ]
机构
[1] Cairo Univ, Inst Stat Studies & Res, Cairo, Egypt
[2] Mansoura Univ, Fac Comp & Informat, Mansoura, Egypt
[3] Suez Canal Univ, Fac Comp & Informat, Ismailia, Egypt
[4] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
[5] Hannam Univ, Daejeon, South Korea
[6] SRGE, Cairo, Egypt
关键词
Region growing; k-means; watershed; filtering; segmentation;
D O I
10.1109/AITS.2015.31
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, it is intended to enhance the simple region growing technique (RG) to extract liver from the abdomen away from other organs in CT images. Iterative K-means clustering technique is used as a preprocessing step to pass the image to region growing and watershed segmentation techniques. The usage of K-means and region growing is preferred here for its simplicity and low cost of execution. The proposed approach starts with cleaning the annotation and enhancing the boundaries of the liver. This is performed using texture filter and ribs connection algorithm, followed by iterative K-means. K-means removes the clusters with higher intensity values. Then region growing is used to separate the whole liver. Finally, comes the role of watershed that divides the liver into a number of regions of interest (ROIs). The experimental results show that the overall accuracy offered by the proposed approach, results in 92.38% accuracy.
引用
收藏
页码:88 / 91
页数:4
相关论文
共 50 条
  • [41] Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing
    Rafiei, Shima
    Karimi, Nader
    Mirmahboub, Behzad
    Najarian, Kayvan
    Felfeliyan, Banafsheh
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6310 - 6313
  • [42] K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    Clausi, DA
    PATTERN RECOGNITION, 2002, 35 (09) : 1959 - 1972
  • [43] Segmentation of Images Using Two Parameter Logistic Type Distribution and K-Means Clustering
    Rao, K. Srinivasa
    Satyanarayana, K., V
    Rao, P. Srinivasa
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (12): : 1 - 20
  • [44] SEGMENTATION OF DCEMR IMAGES OF CERVICAL CANCERS USING K-MEANS CLUSTERING FOR OUTCOME PREDICTION
    Andersen, E. K. F.
    Kristensen, G. B.
    Lyng, H.
    Malinen, E.
    RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S129 - S129
  • [45] A New Augmented K-Means Algorithm for Seed Segmentation in Microscopic Images of the Colon Cancer
    Yurtsever, Ulas
    Evirgen, Hayrettin
    Avunduk, Mustafa Cihat
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 382 - 389
  • [46] Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms
    Jaisakthi, Seetharani Murugaiyan
    Mirunalini, Palaniappan
    Aravindan, Chandrabose
    IET COMPUTER VISION, 2018, 12 (08) : 1088 - 1095
  • [47] A Fast K-Means Algorithm for the Segmentation of Echocardiographic Images Using DBMS-SQL
    Nandagopalan, S.
    Adiga, B. S.
    Dhanalakshmi, C.
    Deepak, N.
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 2, 2010, : 162 - 166
  • [48] Segmentation of White Blood Cells from Microscopic Images using K-means Clustering
    Salem, Nancy M.
    2014 31ST NATIONAL RADIO SCIENCE CONFERENCE (NRSC), 2014, : 371 - 376
  • [49] Real-time segmentation of color images based on the k-means clustering on FPGA
    Saegusa, Takashi
    Maruyama, Tsutomu
    ICFPT 2007: INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY, PROCEEDINGS, 2007, : 329 - 332
  • [50] A REGULARIZED K-MEANS AND MULTIPHASE SCALE SEGMENTATION
    Kang, Sung Ha
    Sandberg, Berta
    Yip, Andy M.
    INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) : 407 - 429