Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing

被引:0
|
作者
Rafiei, Shima [1 ]
Karimi, Nader [1 ]
Mirmahboub, Behzad [2 ]
Najarian, Kayvan [3 ,4 ]
Felfeliyan, Banafsheh [5 ,6 ]
Samavi, Shadrokh [1 ]
Soroushmehr, S. M. Reza [3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Bretagne Sud, IRISA, Lorient, France
[3] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Calgary, Dept Biomed Engn, Calgary, AB, Canada
[6] Univ Calgary, McCaig Inst Bone & Joint Hlth, Calgary, AB, Canada
关键词
D O I
10.1109/embc.2019.8857835
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic liver segmentation plays a vital role in computer-aided diagnosis or treatment. Manual segmentation of organs is a tedious and challenging task and is prone to human errors. In this paper, we propose innovative pre-processing and adaptive 3D region growing methods with subject-specific conditions. To obtain strong edges and high contrast, we propose effective contrast enhancement algorithm then we use the atlas intensity distribution of most probable voxels in probability maps along with location before designing conditions for our 3D region growing method. We also incorporate the organ boundary to restrict the region growing. We compare our method with the label fusion of 13 organs on state-of-the-art Deeds registration method and achieved Dice score of 92.56%.
引用
收藏
页码:6310 / 6313
页数:4
相关论文
共 50 条
  • [1] Liver Segmentation from 3D Abdominal CT Images
    Pham The Bao
    Tran Hong Tai
    Duong, Viet-Hang
    Wang, Jia-Ching
    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2015, : 342 - 343
  • [2] Automated Segmentation of the Liver from 3D CT Images Using Probabilistic Atlas and Multilevel Statistical Shape Model
    Okada, Toshiyuki
    Shimada, Ryuji
    Hori, Masatoshi
    Nakamoto, Masahiko
    Chen, Yen-Wei
    Nakamura, Hironobu
    Sato, Yoshinobu
    ACADEMIC RADIOLOGY, 2008, 15 (11) : 1390 - 1403
  • [3] Segmentation of Spinal Canal Region in CT Images using 3D Region Growing Technique
    Fu, Guanghua
    Lu, Huimin
    Tan, Joo Kooi
    Kim, Hyoungseop
    Zhu, Xinglong
    Lu, Jinhua
    2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY ROBOTICS (ICT-ROBOT), 2018,
  • [4] The Influence of Preprocessing of CT Images on Airway Tree Segmentation Using 3D Region Growing
    Fabijacska, Anna
    MEMSTECH: 2009 INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN, 2009, : 73 - 76
  • [5] Liver Tumors Segmentation from Abdominal CT Images using Region Growing and Morphological Processing
    Abd-Elaziz, O. Fekry
    Sayed, M. Sharaf
    Abdullah, M. Ibrahim
    Abd-Elaziz, Ola F.
    Sayed, Mohammed S.
    Abdullah, Mahmoud I.
    2014 INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICET), 2014,
  • [6] Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model
    Okada, Toshiyuki
    Shimada, Ryuji
    Sato, Yoshinobu
    Hori, Masatoshi
    Yokota, Keita
    Nakamoto, Masahiko
    Chen, Yen-Wei
    Nakamura, Hironobu
    Tamura, Shinichi
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 86 - +
  • [7] Multi-organ Segmentation from 3D Abdominal CT Images using Patient-Specific Weighted-probabilistic Atlas
    Chu, Chengwen
    Oda, Masahiro
    Kitasaka, Takayuki
    Misawa, Kazunari
    Fujiwara, Michitaka
    Hayashi, Yuichiro
    Wolz, Robin
    Rueckert, Daniel
    Mori, Kensaku
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [8] Multi-organ Segmentation Based on Spatially-Divided Probabilistic Atlas from 3D Abdominal CT Images
    Chu, Chengwen
    Oda, Masahiro
    Kitasaka, Takayuki
    Misawa, Kazunari
    Fujiwara, Michitaka
    Hayashi, Yuichiro
    Nimura, Yukitaka
    Rueckert, Daniel
    Mori, Kensaku
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 : 165 - 172
  • [9] A dynamic adaptive region growing segmentation algorithm for tumor of liver CT images
    Song, H. (anniesun@bit.edu.cn), 1600, Beijing Institute of Technology (34):
  • [10] Segmentation of the pulmonary vascular trees in 3D CT images using variational region-growing
    Orkisz, M.
    Hoyos, M. Hernandez
    Romanello, V. Perez
    Romanello, C. Perez
    Prieto, J. C.
    Revol-Muller, C.
    IRBM, 2014, 35 (01) : 11 - 19