Spectral clustering for data categorization based on self-organizing maps

被引:1
|
作者
Saalbach, A [1 ]
Twellmann, T [1 ]
Nattkemper, TW [1 ]
机构
[1] Univ Bielefeld, Appl Neuroinformat Grp, D-33615 Bielefeld, Germany
关键词
spectral clustering; self-organizing maps; neural gas; hierarchical clustering; adjusted rand index;
D O I
10.1117/12.585857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The exploration and categorization of large and unannotated image collections is a challenging task in the field of image retrieval as well as in the generation of appearance based object representations. In this context the Self-Organizing Map (SOM) has shown to be an efficient and scalable tool for the analysis of image collections based on low level features. Next to commonly employed visualization methods, clustering techniques have been recently considered for the aggregation of SOM nodes into groups in order to facilitate category specific data exploration. In this paper, spectral clustering based on graph theoretic concepts is employed for SOM based clustering and data categorization. The results are compared with those from the Neural Gas algorithm and hierarchical agglomerative clustering. Using SOMs trained on an eigenspace representation of the Columbia Object Image Library 20 (COIL20), the correspondence of the results to a semantic reference grouping is calculated. Based on the Adjusted Rand Index it is shown that independent from the number of selected clusters, spectral clustering achieves a significantly higher correspondence to the reference grouping than any of the other methods.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 50 条
  • [41] Topical clustering of biomedical abstracts by self-organizing maps
    Fattore, A
    Arrigo, P
    BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE II, 2006, : 481 - 490
  • [42] Quantitative self-organizing maps for clustering electron tomograms
    Pascual-Montano, A
    Taylor, KA
    Winkler, H
    Pascual-Marqui, RD
    Carazo, JM
    JOURNAL OF STRUCTURAL BIOLOGY, 2002, 138 (1-2) : 114 - 122
  • [43] Clustering and Visualization of Geodetic Array Data Streams using Self-Organizing Maps
    Popovici, Razvan
    Andonie, Razvan
    Szeliga, Walter M.
    Melbourne, Timothy I.
    Scrivner, Craig W.
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA, SIGNAL AND VISION PROCESSING (CIMSIVP), 2014, : 182 - 189
  • [44] A clustering method using hierarchical self-organizing maps
    Endo, M
    Ueno, M
    Tanabe, T
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 32 (1-2): : 105 - 118
  • [45] A Clustering Method Using Hierarchical Self-Organizing Maps
    Masahiro Endo
    Masahiro Ueno
    Takaya Tanabe
    Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 105 - 118
  • [46] Clustering gene expression data using self-organizing maps and k-means clustering
    Yano, N
    Kotani, A
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 3211 - 3215
  • [47] Analysis of proteomic spectral data by multi resolution analysis and self-organizing maps
    Schleif, Frank-Michael
    Villmann, Thomas
    Hammer, Barbara
    APPLICATIONS OF FUZZY SETS THEORY, 2007, 4578 : 563 - +
  • [48] Self-organizing data clustering based on quantum entanglement model
    Shuai, Dianxun
    Liu, Yuzhe
    Qing Shuai
    Huang, Liangjun
    Dong, Yuming
    FIRST INTERNATIONAL MULTI-SYMPOSIUMS ON COMPUTER AND COMPUTATIONAL SCIENCES (IMSCCS 2006), PROCEEDINGS, VOL 2, 2006, : 716 - +
  • [49] Spectral pattern recognition using self-organizing MAPS
    Lavine, BK
    Davidson, CE
    Westover, DJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (03): : 1056 - 1064
  • [50] Probabilistic self-organizing maps for qualitative data
    Lopez-Rubio, Ezequiel
    NEURAL NETWORKS, 2010, 23 (10) : 1208 - 1225