Probabilistic self-organizing maps for qualitative data

被引:14
|
作者
Lopez-Rubio, Ezequiel [1 ]
机构
[1] Univ Malaga, Dept Comp Languages & Comp Sci, E-29071 Malaga, Spain
关键词
Self organizing maps; Categorical data; Qualitative data; Discrete probability distribution; Unsupervised learning; Stochastic approximation; NETWORK INTRUSION DETECTION; MULTIVARIATE-BERNOULLI; CATEGORICAL-DATA; NEURAL-NETWORKS; MISSING VALUES; LATENT CLASS; MODELS; DISTRIBUTIONS; IMPUTATION; MIXTURE;
D O I
10.1016/j.neunet.2010.07.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a self-organizing map model to study qualitative data (also called categorical data) It is based on a probabilistic framework which does not assume any prespecified distribution of the input data Stochastic approximation theory is used to develop a learning rule that builds an approximation of a discrete distribution on each unit This way the internal structure of the input dataset and the correlations between components are revealed without the need of a distance measure among the input values Experimental results show the capabilities of the model in visualization and unsupervised learning tasks (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:1208 / 1225
页数:18
相关论文
共 50 条
  • [1] Probabilistic Self-Organizing Maps for Continuous Data
    Lopez-Rubio, Ezequiel
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (10): : 1543 - 1554
  • [2] Probabilistic PCA Self-Organizing Maps
    Lopez-Rubio, Ezequiel
    Ortiz-de-Lazcano-Lobato, Juan Miguel
    Lopez-Rodriguez, Domingo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (09): : 1474 - 1489
  • [3] Probabilistic Self-Organizing Maps for Multivariate Sequences
    Jaziri, Rakia
    Lebbah, Mustapha
    Rogovschi, Nicoleta
    Bennani, Younes
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 851 - 858
  • [4] Self-Organizing Maps for imprecise data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    [J]. FUZZY SETS AND SYSTEMS, 2014, 237 : 63 - 89
  • [5] Data management by self-organizing maps
    Kohonen, Teuvo
    [J]. COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 309 - 332
  • [6] A conditional, a fuzzy and a probabilistic interpretation of self-organizing maps
    Giordano, Laura
    Gliozzi, Valentina
    Theseider Dupre, Daniele
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2022, 32 (02) : 178 - 205
  • [7] Qualitative analysis of goat and sheep production data using self-organizing maps
    Magdalena, R.
    Fernandez, C.
    Martin, J. D.
    Soria, E.
    Martinez, M.
    Navarro, M. J.
    Mata, C.
    [J]. EXPERT SYSTEMS, 2009, 26 (02) : 191 - 201
  • [8] Exploring forensic data with self-organizing maps
    Fei, B
    Eloff, J
    Venter, H
    Olivier, M
    [J]. ADVANCES IN DIGITAL FORENSICS, 2006, 194 : 113 - +
  • [9] Mining informetric data with self-organizing maps
    Sotolongo-Aguilar, G
    Guzmán-Sánchez, MV
    Saavedra-Fernández, O
    Carrillo-Calvet, HA
    [J]. 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, 2001, : 665 - 673
  • [10] An extension of self-organizing maps to categorical data
    Chen, N
    Marques, NC
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3808 : 304 - 313