Probabilistic self-organizing maps for qualitative data

被引:14
|
作者
Lopez-Rubio, Ezequiel [1 ]
机构
[1] Univ Malaga, Dept Comp Languages & Comp Sci, E-29071 Malaga, Spain
关键词
Self organizing maps; Categorical data; Qualitative data; Discrete probability distribution; Unsupervised learning; Stochastic approximation; NETWORK INTRUSION DETECTION; MULTIVARIATE-BERNOULLI; CATEGORICAL-DATA; NEURAL-NETWORKS; MISSING VALUES; LATENT CLASS; MODELS; DISTRIBUTIONS; IMPUTATION; MIXTURE;
D O I
10.1016/j.neunet.2010.07.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a self-organizing map model to study qualitative data (also called categorical data) It is based on a probabilistic framework which does not assume any prespecified distribution of the input data Stochastic approximation theory is used to develop a learning rule that builds an approximation of a discrete distribution on each unit This way the internal structure of the input dataset and the correlations between components are revealed without the need of a distance measure among the input values Experimental results show the capabilities of the model in visualization and unsupervised learning tasks (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:1208 / 1225
页数:18
相关论文
共 50 条
  • [21] Self-Organizing Maps for In Silico Screening and Data Visualization
    Digles, Daniela
    Ecker, Gerhard F.
    MOLECULAR INFORMATICS, 2011, 30 (10) : 838 - 846
  • [22] Hierarchical self-organizing maps for clustering spatiotemporal data
    Hagenauer, Julian
    Helbich, Marco
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (10) : 2026 - 2042
  • [23] Advances in self-organizing maps for their application to compositional data
    Martin-Fernandez, Josep A.
    Engle, Mark A.
    Ruppert, Leslie F.
    Olea, Ricardo A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (03) : 817 - 826
  • [24] Enhanced dynamic self-organizing maps for data cluster
    Feng, Li
    Sun, Li-Quan
    Information Technology Journal, 2013, 12 (02) : 375 - 379
  • [25] Application of self-organizing maps to coal elemental data
    Xu, Na
    Zhu, Wei
    Wang, Ru
    Li, Qiang
    Wang, Zhiwei
    Finkelman, Robert B.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2023, 277
  • [26] SELF-ORGANIZING MAPS AS DATA CLASSIFIERS IN MEDICAL APPLICATIONS
    Tuckova, Jana
    Bartu, Marek
    Zetocha, Petr
    Grill, Pavel
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 422 - 429
  • [27] Visualization of Agriculture Data Using Self-Organizing Maps
    Russ, Georg
    Kruse, Rudolf
    Schneider, Martin
    Wagner, Peter
    APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVI, 2009, : 47 - +
  • [28] Multisource data fusion with multiple self-organizing maps
    Wan, WJ
    Fraser, D
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03): : 1344 - 1349
  • [29] Knowledge Discovery: Data Mining by Self-organizing Maps
    de Almeida Gago Junior, Everton Luiz
    Breda, Gean Davis
    Marques, Eduardo Zanoni
    Mendes, Leonardo de Souza
    WEB INFORMATION SYSTEMS AND TECHNOLOGIES, WEBIST 2012, 2013, 140 : 185 - 200
  • [30] Self-organizing maps in mining gene expression data
    Torkkola, K
    Gardner, RM
    Kaysser-Kranich, T
    Ma, C
    INFORMATION SCIENCES, 2001, 139 (1-2) : 79 - 96