Quasi-local energy with respect to a static spacetime

被引:0
|
作者
Chen, Po-Ning [1 ]
Wang, Mu-Tao [2 ]
Wang, Ye-Kai [3 ]
Yau, Shing-Tung [4 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[3] Natl Cheng Kung Univ, Dept Math, 1 Dasyue Rd, Tainan 70101, Taiwan
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
INITIAL DATA SETS; CONSERVED QUANTITIES; GENERAL-RELATIVITY; MANIFOLDS; PROOF;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
This article considers the quasi-local energy in reference to a general static spacetime. We follow the approach developed by the authors in [7, 9, 19, 20] and define the quasi-local energy as a difference of surface Hamiltonians, which are derived from the Einstein-Hilbert action. The new quasi-local energy provides an effective gauge independent measurement of how far a spacetime deviates away from the reference static spacetime on a finitely extended region.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [31] A Quasi-Local Mass
    Alaee, Aghil
    Khuri, Marcus
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (05)
  • [32] Minimizing Properties of Critical Points of Quasi-Local Energy
    Chen, Po-Ning
    Wang, Mu-Tao
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (03) : 919 - 935
  • [33] On Second Variation of Wang–Yau Quasi-Local Energy
    Pengzi Miao
    Luen-Fai Tam
    Annales Henri Poincaré, 2014, 15 : 1367 - 1402
  • [34] ON THE QUASI-LOCAL ENERGY OF AXIALLY-SYMMETRICAL SPACETIMES
    ZASLAVSKII, OB
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (07) : L63 - L67
  • [35] QUASI-LOCAL ENERGY FOR A KERR BLACK-HOLE
    MARTINEZ, EA
    PHYSICAL REVIEW D, 1994, 50 (08) : 4920 - 4928
  • [36] CANONICAL VARIABLES AND QUASI-LOCAL ENERGY IN GENERAL-RELATIVITY
    LAU, S
    CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (11) : 2379 - 2399
  • [37] ON QUASI-LOCAL NOETHERIAN RINGS
    MICHLER, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) : 222 - &
  • [38] Critical Points of Wang-Yau Quasi-Local Energy
    Miao, Pengzi
    Tam, Luen-Fai
    Xie, Naqing
    ANNALES HENRI POINCARE, 2011, 12 (05): : 987 - 1017
  • [39] On Second Variation of Wang-Yau Quasi-Local Energy
    Miao, Pengzi
    Tam, Luen-Fai
    ANNALES HENRI POINCARE, 2014, 15 (07): : 1367 - 1402
  • [40] INTERSECTIONS OF QUASI-LOCAL DOMAINS
    PREKOWITZ, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 329 - 339