Critical Points of Wang-Yau Quasi-Local Energy

被引:16
|
作者
Miao, Pengzi [1 ,2 ]
Tam, Luen-Fai [3 ]
Xie, Naqing [4 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Miami, Dept Math, Coral Gables, FL 33146 USA
[3] Chinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
ANNALES HENRI POINCARE | 2011年 / 12卷 / 05期
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Fundamental Form; Boundary Component; Isometric Embedding; Spacelike Hypersurface; Dominant Energy Condition;
D O I
10.1007/s00023-011-0097-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we prove the following theorem regarding the Wang-Yau quasi-local energy of a spacelike two-surface in a spacetime: Let Sigma be a boundary component of some compact, time-symmetric, spacelike hypersurface Omega in a time-oriented spacetime N satisfying the dominant energy condition. Suppose the induced metric on Sigma has positive Gaussian curvature and all boundary components of Omega have positive mean curvature. Suppose H <= H-0 where H is the mean curvature of Sigma in Omega and H-0 is the mean curvature of Sigma when isometrically embedded in R-3. If Omega is not isometric to a domain in R-3, then 1. the Brown-York mass of Sigma in Omega is a strict local minimum of the Wang-Yau quasi-local energy of Sigma. 2. on a small perturbation (Sigma) over tilde of Sigma in N, there exists a critical point of the Wang-Yau quasi-local energy of (Sigma) over tilde.
引用
收藏
页码:987 / 1017
页数:31
相关论文
共 50 条
  • [1] Critical Points of Wang–Yau Quasi-Local Energy
    Pengzi Miao
    Luen-Fai Tam
    Naqing Xie
    Annales Henri Poincaré, 2011, 12 : 987 - 1017
  • [2] On Second Variation of Wang-Yau Quasi-Local Energy
    Miao, Pengzi
    Tam, Luen-Fai
    ANNALES HENRI POINCARE, 2014, 15 (07): : 1367 - 1402
  • [3] Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass
    Liu, Jian-Liang
    Yu, Chengjie
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 330 - 341
  • [4] Evaluating Small Sphere Limit of the Wang-Yau Quasi-Local Energy
    Chen, Po-Ning
    Wang, Mu-Tao
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (02) : 731 - 774
  • [5] Some remarks on Wang-Yau quasi-local mass
    Zhao, Bowen
    Andersson, Lars
    Yau, Shing-Tung
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (02)
  • [6] On Second Variation of Wang–Yau Quasi-Local Energy
    Pengzi Miao
    Luen-Fai Tam
    Annales Henri Poincaré, 2014, 15 : 1367 - 1402
  • [7] Evaluating Small Sphere Limit of the Wang–Yau Quasi-Local Energy
    Po-Ning Chen
    Mu-Tao Wang
    Shing-Tung Yau
    Communications in Mathematical Physics, 2018, 357 : 731 - 774
  • [8] Wang and Yau's quasi-local energy for an extreme Kerr spacetime
    Miller, Warner A.
    Ray, Shannon
    Wang, Mu-Tao
    Yau, Shing-Tung
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (05)
  • [9] Minimizing Properties of Critical Points of Quasi-Local Energy
    Po-Ning Chen
    Mu-Tao Wang
    Shing-Tung Yau
    Communications in Mathematical Physics, 2014, 329 : 919 - 935
  • [10] Minimizing Properties of Critical Points of Quasi-Local Energy
    Chen, Po-Ning
    Wang, Mu-Tao
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (03) : 919 - 935