Bounding the sum of powers of normalized Laplacian eigenvalues of a graph

被引:15
|
作者
Li, Jianxi [1 ]
Guo, Ji-Ming [2 ]
Shiu, Wai Chee [3 ]
Altindag, S. Burcu Bozkurt [4 ]
Bozkurt, Durmus [4 ]
机构
[1] Minnan Normal Univ, Sch Math & Stat, Zhangzhou, Fujian, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] Selcuk Univ, Sci Fac, Dept Math, TR-42075 Campus, Konya, Turkey
关键词
Normalized; Laplacian; Eigenvalue; Bound; ESTRADA INDEX; RANDIC INDEX; ENERGY; SPECTRUM;
D O I
10.1016/j.amc.2017.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph of order n. Its normalized Laplacian eigenvalues are lambda(1) > lambda(2) > ... >lambda(n-1) > lambda(n) = 0. In this paper, new bounds on S-beta*(G) = Sigma (i = 1) (n-1) lambda(beta)(i) (beta not equal 0.1) are derived. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 50 条
  • [31] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [32] A note on sum of powers of the Laplacian eigenvalues of bipartite graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2503 - 2510
  • [33] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Tian, Xiao-guo
    Wang, Li-gong
    Lu, You
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 628 - 644
  • [34] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo TIAN
    Li-gong WANG
    You LU
    ActaMathematicaeApplicataeSinica, 2021, 37 (03) : 628 - 644
  • [35] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644
  • [36] Note on an upper bound for sum of the Laplacian eigenvalues of a graph
    Chen, Xiaodan
    Li, Jingjian
    Fan, Yingmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 258 - 265
  • [37] On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture
    Ganie, Hilal A.
    Alghamdi, Ahmad M.
    Pirzada, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 : 376 - 389
  • [38] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [39] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Hilal A. Ganie
    S. Pirzada
    Vilmar Trevisan
    Mediterranean Journal of Mathematics, 2021, 18
  • [40] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Ganie, Hilal A.
    Pirzada, S.
    Trevisan, Vilmar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)