Moduli of coassociative submanifolds and semi-flat G2-manifolds

被引:11
|
作者
Baraglia, D. [1 ]
机构
[1] Australian Natl Univ, Dept Theoret Phys, Canberra, ACT 0200, Australia
关键词
Coassociative submanifolds; G(2)-manifolds; Torus fibrations; MANIFOLDS; SURFACES; GEOMETRY; HOLONOMY; TORI;
D O I
10.1016/j.geomphys.2010.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the moduli space of deformations of a compact coassociative submanifold C has a natural local embedding as a submanifold of H-2(C, R). We show that a G(2)-manifold with a T-4-action of isometries such that the orbits are coassociative tori is locally equivalent to a minimal 3-manifold in R-3,R-3 with positive induced metric where R-3,R-3 congruent to H-2(T-4, R). By studying minimal surfaces in quadrics we show how to construct minimal 3-manifold cones in R-3,R-3 and hence G(2)-metrics from a real form of the affine Toda equations. The relations to semi-flat special Lagrangian fibrations and the Monge-Ampere equation are explained. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1903 / 1918
页数:16
相关论文
共 50 条
  • [21] Coulomb and Higgs phases of G2-manifolds
    Acharya, B. S.
    Baldwin, D. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [22] Deformations of asymptotically cylindrical G2-manifolds
    Nordstroem, Johannes
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 311 - 348
  • [23] Locally conformal calibrated G2-manifolds
    Fernandez, Marisa
    Fino, Anna
    Raffero, Alberto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1721 - 1736
  • [24] Iterated collapsing phenomenon on G2-manifolds
    Li, Yang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (03) : 971 - 1036
  • [25] Coulomb and Higgs phases of G2-manifolds
    B. S. Acharya
    D. A. Baldwin
    Journal of High Energy Physics, 2024
  • [26] GENERALIZED G2-MANIFOLDS AND SU(3)-STRUCTURES
    Fino, Anna
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (10) : 1147 - 1165
  • [27] Spinorial description of SU(3)- and G2-manifolds
    Agricola, Ilka
    Chiossi, Simon G.
    Friedrich, Thomas
    Hoell, Jos
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 535 - 555
  • [28] U(1)-Gauge Theories on G2-Manifolds
    Hu, Zhi
    Zong, Runhong
    ANNALES HENRI POINCARE, 2024, 25 (05): : 2453 - 2487
  • [29] Manifolds with parallel differential forms and Kahler identities for G2-manifolds
    Verbitsky, Misha
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1001 - 1016
  • [30] EXISTENCE OF COMPATIBLE CONTACT STRUCTURES ON G2-MANIFOLDS
    Arikan, M. Firat
    Cho, Hyunjoo
    Salur, Sema
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (02) : 321 - 333